编辑:我把旧答案放在最后
这是承诺的更详细的示例:
通常我从所需语言的示例文件开始:
# example.toy
begin # example of the simple toy language
x = 23;
while x > 0 do begin
x = x - 1;
print(x*x);
end;
end;
下一步是在前一个文件通过的地方创建一个词法分析器+解析器组合。
词法分析器来了(用 生成源代码flex -o lexer.c lexer.l
)。另请注意,词法分析器源取决于解析器源(因为 TOKEN_* 常量),因此必须在编译词法分析器源之前运行 bison:
%option noyywrap
%{
#include "parser.h"
#include <stdlib.h>
%}
%%
"while" return TOKEN_WHILE;
"begin" return TOKEN_BEGIN;
"end" return TOKEN_END;
"do" return TOKEN_DO;
[a-zA-Z_][a-zA-Z0-9_]* {yylval.name = strdup(yytext); return TOKEN_ID;}
[-]?[0-9]+ {yylval.val = atoi(yytext); return TOKEN_NUMBER;}
[()=;] {return *yytext;}
[*/+-<>] {yylval.op = *yytext; return TOKEN_OPERATOR;}
[ \t\n] {/* suppress the output of the whitespaces from the input file to stdout */}
#.* {/* one-line comment */}
和解析器(用 编译bison -d -o parser.c parser.y
,-d
告诉野牛用词法分析器需要的一些东西创建 parser.h 头文件)
%error-verbose /* instruct bison to generate verbose error messages*/
%{
/* enable debugging of the parser: when yydebug is set to 1 before the
* yyparse call the parser prints a lot of messages about what it does */
#define YYDEBUG 1
%}
%union {
int val;
char op;
char* name;
}
%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO TOKEN_ID TOKEN_NUMBER TOKEN_OPERATOR
%start program
%{
/* Forward declarations */
void yyerror(const char* const message);
%}
%%
program: statement';';
block: TOKEN_BEGIN statements TOKEN_END;
statements:
| statements statement ';'
| statements block';';
statement:
assignment
| whileStmt
| block
| call;
assignment: TOKEN_ID '=' expression;
expression: TOKEN_ID
| TOKEN_NUMBER
| expression TOKEN_OPERATOR expression;
whileStmt: TOKEN_WHILE expression TOKEN_DO statement;
call: TOKEN_ID '(' expression ')';
%%
#include <stdlib.h>
void yyerror(const char* const message)
{
fprintf(stderr, "Parse error:%s\n", message);
exit(1);
}
int main()
{
yydebug = 0;
yyparse();
}
gcc parser.c lexer.c -o toylang-noop
调用后必须toylang-noop < example.toy
运行没有任何错误。所以现在解析器本身可以工作并且可以解析示例脚本。
下一步是创建一个所谓的语法抽象语法树。在这一点上,我开始通过为标记和规则定义不同的类型以及在每个解析步骤中插入规则来扩充解析器。
%error-verbose /* instruct bison to generate verbose error messages*/
%{
#include "astgen.h"
#define YYDEBUG 1
/* Since the parser must return the AST, it must get a parameter where
* the AST can be stored. The type of the parameter will be void*. */
#define YYPARSE_PARAM astDest
%}
%union {
int val;
char op;
char* name;
struct AstElement* ast; /* this is the new member to store AST elements */
}
%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO
%token<name> TOKEN_ID
%token<val> TOKEN_NUMBER
%token<op> TOKEN_OPERATOR
%type<ast> program block statements statement assignment expression whileStmt call
%start program
%{
/* Forward declarations */
void yyerror(const char* const message);
%}
%%
program: statement';' { (*(struct AstElement**)astDest) = $1; };
block: TOKEN_BEGIN statements TOKEN_END{ $$ = $2; };
statements: {$$=0;}
| statements statement ';' {$$=makeStatement($1, $2);}
| statements block';' {$$=makeStatement($1, $2);};
statement:
assignment {$$=$1;}
| whileStmt {$$=$1;}
| block {$$=$1;}
| call {$$=$1;}
assignment: TOKEN_ID '=' expression {$$=makeAssignment($1, $3);}
expression: TOKEN_ID {$$=makeExpByName($1);}
| TOKEN_NUMBER {$$=makeExpByNum($1);}
| expression TOKEN_OPERATOR expression {$$=makeExp($1, $3, $2);}
whileStmt: TOKEN_WHILE expression TOKEN_DO statement{$$=makeWhile($2, $4);};
call: TOKEN_ID '(' expression ')' {$$=makeCall($1, $3);};
%%
#include "astexec.h"
#include <stdlib.h>
void yyerror(const char* const message)
{
fprintf(stderr, "Parse error:%s\n", message);
exit(1);
}
int main()
{
yydebug = 0;
struct AstElement *a;
yyparse(&a);
}
如您所见,生成 AST 的主要部分是在传递解析器的某个规则时创建 AST 的节点。由于bison自己维护了当前解析过程的堆栈,因此只需要将当前解析状态分配给堆栈的元素(这些是$$=foo(bar)
行)
目标是内存中的以下结构:
ekStatements
.count = 2
.statements
ekAssignment
.name = "x"
.right
ekNumber
.val = 23
ekWhile
.cond
ekBinExpression
.left
ekId
.name = "x"
.right
ekNumber
.val=0
.op = '>'
.statements
ekAssignment
.name = "x"
.right
ekBinExpression
.left
ekId
.name = "x"
.right
ekNumber
.val = 1
.op = '-'
ekCall
.name = "print"
.param
ekBinExpression
.left
ekId
.name = "x"
.right
ekId
.name = "x"
.op = '*'
要获得此图,需要生成代码 astgen.h:
#ifndef ASTGEN_H
#define ASTGEN_H
struct AstElement
{
enum {ekId, ekNumber, ekBinExpression, ekAssignment, ekWhile, ekCall, ekStatements, ekLastElement} kind;
union
{
int val;
char* name;
struct
{
struct AstElement *left, *right;
char op;
}expression;
struct
{
char*name;
struct AstElement* right;
}assignment;
struct
{
int count;
struct AstElement** statements;
}statements;
struct
{
struct AstElement* cond;
struct AstElement* statements;
} whileStmt;
struct
{
char* name;
struct AstElement* param;
}call;
} data;
};
struct AstElement* makeAssignment(char*name, struct AstElement* val);
struct AstElement* makeExpByNum(int val);
struct AstElement* makeExpByName(char*name);
struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op);
struct AstElement* makeStatement(struct AstElement* dest, struct AstElement* toAppend);
struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec);
struct AstElement* makeCall(char* name, struct AstElement* param);
#endif
astgen.c:
#include "astgen.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
static void* checkAlloc(size_t sz)
{
void* result = calloc(sz, 1);
if(!result)
{
fprintf(stderr, "alloc failed\n");
exit(1);
}
}
struct AstElement* makeAssignment( char*name, struct AstElement* val)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekAssignment;
result->data.assignment.name = name;
result->data.assignment.right = val;
return result;
}
struct AstElement* makeExpByNum(int val)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekNumber;
result->data.val = val;
return result;
}
struct AstElement* makeExpByName(char*name)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekId;
result->data.name = name;
return result;
}
struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekBinExpression;
result->data.expression.left = left;
result->data.expression.right = right;
result->data.expression.op = op;
return result;
}
struct AstElement* makeStatement(struct AstElement* result, struct AstElement* toAppend)
{
if(!result)
{
result = checkAlloc(sizeof(*result));
result->kind = ekStatements;
result->data.statements.count = 0;
result->data.statements.statements = 0;
}
assert(ekStatements == result->kind);
result->data.statements.count++;
result->data.statements.statements = realloc(result->data.statements.statements, result->data.statements.count*sizeof(*result->data.statements.statements));
result->data.statements.statements[result->data.statements.count-1] = toAppend;
return result;
}
struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekWhile;
result->data.whileStmt.cond = cond;
result->data.whileStmt.statements = exec;
return result;
}
struct AstElement* makeCall(char* name, struct AstElement* param)
{
struct AstElement* result = checkAlloc(sizeof(*result));
result->kind = ekCall;
result->data.call.name = name;
result->data.call.param = param;
return result;
}
您可以在这里看到 AST 元素的生成是一项相当单调的工作。步骤完成后,程序仍然什么都不做,但可以在调试器中查看 AST。
下一步是编写解释器。这是 astexec.h:
#ifndef ASTEXEC_H
#define ASTEXEC_H
struct AstElement;
struct ExecEnviron;
/* creates the execution engine */
struct ExecEnviron* createEnv();
/* removes the ExecEnviron */
void freeEnv(struct ExecEnviron* e);
/* executes an AST */
void execAst(struct ExecEnviron* e, struct AstElement* a);
#endif
嗯,这看起来很友好。解释器本身很简单,尽管它很长。大多数函数只处理一种特定类型的 AstElement。正确的函数由 dispatchExpression 和 dispatchStatement 函数选择。调度函数在 valExecs 和 runExecs 数组中查找目标函数。
astexec.c:
#include "astexec.h"
#include "astgen.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
struct ExecEnviron
{
int x; /* The value of the x variable, a real language would have some name->value lookup table instead */
};
static int execTermExpression(struct ExecEnviron* e, struct AstElement* a);
static int execBinExp(struct ExecEnviron* e, struct AstElement* a);
static void execAssign(struct ExecEnviron* e, struct AstElement* a);
static void execWhile(struct ExecEnviron* e, struct AstElement* a);
static void execCall(struct ExecEnviron* e, struct AstElement* a);
static void execStmt(struct ExecEnviron* e, struct AstElement* a);
/* Lookup Array for AST elements which yields values */
static int(*valExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
execTermExpression,
execTermExpression,
execBinExp,
NULL,
NULL,
NULL,
NULL
};
/* lookup array for non-value AST elements */
static void(*runExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
NULL, /* ID and numbers are canonical and */
NULL, /* don't need to be executed */
NULL, /* a binary expression is not executed */
execAssign,
execWhile,
execCall,
execStmt,
};
/* Dispatches any value expression */
static int dispatchExpression(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(valExecs[a->kind]);
return valExecs[a->kind](e, a);
}
static void dispatchStatement(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(runExecs[a->kind]);
runExecs[a->kind](e, a);
}
static void onlyName(const char* name, const char* reference, const char* kind)
{
if(strcmp(reference, name))
{
fprintf(stderr,
"This language knows only the %s '%s', not '%s'\n",
kind, reference, name);
exit(1);
}
}
static void onlyX(const char* name)
{
onlyName(name, "x", "variable");
}
static void onlyPrint(const char* name)
{
onlyName(name, "print", "function");
}
static int execTermExpression(struct ExecEnviron* e, struct AstElement* a)
{
/* This function looks ugly because it handles two different kinds of
* AstElement. I would refactor it to an execNameExp and execVal
* function to get rid of this two if statements. */
assert(a);
if(ekNumber == a->kind)
{
return a->data.val;
}
else
{
if(ekId == a->kind)
{
onlyX(a->data.name);
assert(e);
return e->x;
}
}
fprintf(stderr, "OOPS: tried to get the value of a non-expression(%d)\n", a->kind);
exit(1);
}
static int execBinExp(struct ExecEnviron* e, struct AstElement* a)
{
assert(ekBinExpression == a->kind);
const int left = dispatchExpression(e, a->data.expression.left);
const int right = dispatchExpression(e, a->data.expression.right);
switch(a->data.expression.op)
{
case '+':
return left + right;
case '-':
return left - right;
case '*':
return left * right;
case '<':
return left < right;
case '>':
return left > right;
default:
fprintf(stderr, "OOPS: Unknown operator:%c\n", a->data.expression.op);
exit(1);
}
/* no return here, since every switch case returns some value (or bails out) */
}
static void execAssign(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(ekAssignment == a->kind);
onlyX(a->data.assignment.name);
assert(e);
struct AstElement* r = a->data.assignment.right;
e->x = dispatchExpression(e, r);
}
static void execWhile(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(ekWhile == a->kind);
struct AstElement* const c = a->data.whileStmt.cond;
struct AstElement* const s = a->data.whileStmt.statements;
assert(c);
assert(s);
while(dispatchExpression(e, c))
{
dispatchStatement(e, s);
}
}
static void execCall(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(ekCall == a->kind);
onlyPrint(a->data.call.name);
printf("%d\n", dispatchExpression(e, a->data.call.param));
}
static void execStmt(struct ExecEnviron* e, struct AstElement* a)
{
assert(a);
assert(ekStatements == a->kind);
int i;
for(i=0; i<a->data.statements.count; i++)
{
dispatchStatement(e, a->data.statements.statements[i]);
}
}
void execAst(struct ExecEnviron* e, struct AstElement* a)
{
dispatchStatement(e, a);
}
struct ExecEnviron* createEnv()
{
assert(ekLastElement == (sizeof(valExecs)/sizeof(*valExecs)));
assert(ekLastElement == (sizeof(runExecs)/sizeof(*runExecs)));
return calloc(1, sizeof(struct ExecEnviron));
}
void freeEnv(struct ExecEnviron* e)
{
free(e);
}
现在解释器已经完成,并且可以运行示例,更新 main 函数后:
#include <assert.h>
int main()
{
yydebug = 0;
struct AstElement *a = 0;
yyparse(&a);
/* Q&D WARNING: in production code this assert must be replaced by
* real error handling. */
assert(a);
struct ExecEnviron* e = createEnv();
execAst(e, a);
freeEnv(e);
/* TODO: destroy the AST */
}
现在这种语言的解释器可以工作了。请注意,此解释器存在一些限制:
- 它只有一个变量和一个函数
- 只有值的类型 int
- 很难添加 goto 支持,因为对于每个 AST 元素,解释器都会调用一个解释函数。Goto 可以通过在
execStmt
函数中加入一些东西在一个块内实现,但是要在不同的块或级别之间跳转,必须显着改变执行机制(这是因为无法在解释器中的不同堆栈帧之间跳转)。例如,可以将 AST 转换为字节码,并且该字节码由 vm 解释。
- 其他一些我需要查找的:)
您需要为您的语言定义语法。像这样的事情(词法分析器和解析器都不完整):
/* foo.y */
%token ID IF ELSE OR AND /* 首先列出该语言的所有终端符号 */
%%
statements: /* 允许空语句 */ | stm | 语句';' stm;
stm:if语句
| 姓名
| NAME expList
| 标签;
expList: 表达式 | expList 表达式;
label: ':' NAME { /* 存储标签的代码 */ };
ifStatement:IF 表达式语句
| IF 表达式语句 ELSE 语句;
expression: ID { /* 处理找到的 ID 的代码 */ }
| expression AND expression { /* 将两个表达式与 and */ 组合的代码
| 表达式 OR 表达式
| '(' 表达 ')';
然后你用bison -d foo.y -o foo.c
. 该-d
开关指示 bison 生成一个包含解析器使用的所有标记的标头。现在你创建你的词法分析器
/* bar.l */
%{
#include "foo.h"
%}
%%
如果返回 IF;
否则返回 ELSE;
或返回或;
与返回与;
[AZ]+ { /*将 yylval 存储在某个地方以便在解析器中访问它*/ return ID; }
在此之后,您完成了词法分析器和解析器,并且“只”需要为您的语言编写语义操作。