我已经从算法介绍书中编写了 MAX-HEAPIFY(A,i) 方法。现在我想用while循环编写它而不用递归。你能帮我吗?
问问题
8176 次
2 回答
3
您可以使用带有 i <= HEAPSIZE 条件的 while 循环并使用所有其他相同的条件,除非您找到正确的位置只是打破循环。代码:-
while ( i < = heapsize) {
le <- left(i)
ri <- right(i)
if (le<=heapsize) and (A[le]>A[i])
largest <- le
else
largest <- i
if (ri<=heapsize) and (A[ri]>A[largest])
largest <- ri
if (largest != i)
{
exchange A[i] <-> A[largest]
i <- largest
}
else
break
}
于 2014-10-10T10:00:59.710 回答
0
上面的解决方案有效,但我认为以下代码更接近递归版本
(* Code TP compatible *)
const maxDim = 1000;
type TElem = integer;
TArray = array[1..maxDim]of TElem
procedure heapify(var A:TArray;i,heapsize:integer);
var l,r,largest,save:integer;
temp:TElem;
(*i - index of node that violates heap property
l - index of left child of node with index i
r - index of right child of node with index i
largest - index of largest element of the triplet (i,l,r)
save - auxiliary variable to save the value of i
temp - auxiliary variable used for swapping *)
begin
repeat
l:=2*i;
r:=2*i + 1;
if(l <= heapsize) and (A[l] > A[i]) then
largest:=l
else
largest:=i;
if(r <= heapsize) and (A[r] > A[largest]) then
largest:=r;
(*Now we save the value i to check properly the termination
condition of repeat until loop
The value of i will be modified soon in the if statement *)
save:=i;
if largest <> i then
begin
temp:=A[i];
A[i]:=A[largest];
A[largest]:=temp;
i:=largest;
end;
until largest = save;
(*Why i used repeat until istead of while ?
because body of the called procedure will be executed
at least once *)
end;
还有一件事,在 Wirth 的算法 + 数据结构 = 程序
中可以找到没有递归的 sift 过程,
但我们应该引入布尔变量或中断来消除 goto 语句
于 2018-03-03T06:03:52.120 回答