10

我有一个data_df包含多列的数据框,其中一列c包含国家名称。如何过滤掉c == None.

我的第一次尝试是这样做:

countries_df = data_df[data_df.c != None]

但是,这产生了 0 行。然而,这奏效了:

countries_df = data_df[~data_df.c.isin([None])]

有人可以解释为什么吗?从 Pandas 文档看来,第一个应该能够正确过滤。

一些示例行:

  _heartbeat_                           a                    al     c      cy     g
0   NaN Mozilla/5.0 (Linux; U; Android 4.1.2; en-us; H...   en-US   US  Anaheim 15r91
1   NaN Mozilla/4.0 (compatible; MSIE 7.0; Windows NT ...   en-us   None    NaN ifIpBW
2   NaN Mozilla/5.0 (Windows NT 6.1; rv:21.0) Gecko/20...   en-US,en;q=0.5  US  Fort Huachuca   10DaxOu
3   NaN Mozilla/5.0 (Linux; U; Android 4.1.2; en-us; S...   en-US   US  Houston TysVFU
4   NaN Opera/9.80 (Android; Opera Mini/7.5.33286/29.3...   en  None    NaN 10IGW7m
5   NaN Mozilla/5.0 (compatible; MSIE 10.0; Windows NT...   en-US   US  Mishawaka   13GrCeP
6   NaN Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) G...   en-US,en;q=0.5  US  Hammond YmtpnZ
7   NaN Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_5 li...   en-us   None    NaN 13oM0hV
8   NaN Mozilla/5.0 (iPhone; CPU iPhone OS 6_1_3 like ...   en-us   AU  Sydney  15r91
9   NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi...   en-US,en;q=0.8  None    NaN 109LtDc
10  NaN Mozilla/5.0 (iPhone; CPU iPhone OS 6_1_3 like ...   en-us   US  Middletown  109ar5F
11  NaN Mozilla/5.0 (iPhone; CPU iPhone OS 6_1_3 like ...   en-us   US  Germantown  107xZnW
4

1 回答 1

28

None在比较相等性时,熊猫和 Numpy 似乎特别对待。在 pandas 中,None应该类似于 NaN,表示缺失值。要查找值不是无(或nan)的行,您可以执行data_df[data_df.c.notnull()](或data_df[~data_df.c.isnull()])。

于 2014-10-08T05:55:31.503 回答