这是我的第一个多处理实现,我已经按顺序执行了我的代码,我花了大约 30 秒来处理 20 条记录。但是我创建了一个字典,每个键都有一组记录,并尝试使用 pool.map 为每个键应用该函数。现在虽然我正在为每个进程分配每个核心,但现在需要超过 2 分钟的时间来处理。有人可以帮我优化这个。
def f(values):
data1 = itertools.combinations(values,2)
tuple_attr =('Age', 'Workclass', 'Fnlwgt', 'Education', 'Education-num', 'marital-status', 'Occupation', 'Relationship', 'Race', 'Sex', 'Capital-gain', 'Capital-loss', 'Hours-per-week', 'Native country', 'Probability', 'Id')
new = ((tuple_attr[i] for i, t in enumerate(zip(*pair)) if t[0]!=t[1]) for pair in data1)
skt = set(frozenset(temp) for temp in new)
newset = set(s for s in skt if not any(p < s for p in skt))
empty = frozenset(" ")
tr_x = set(frozenset(i) for i in empty)
tr = set(frozenset(i) for i in empty)
for e in newset:
tr.clear()
tr = tr.union(tr_x)
tr_x.clear()
for x in tr:
for a in e:
if x == empty:
tmp = frozenset(frozenset([a]))
tr_x = tr_x.union([tmp])
else :
tmp = frozenset(frozenset([a]).union(x))
tr_x = tr_x.union([tmp])
tr.clear()
tr = tr.union(tr_x)
tr = set(l for l in tr if not any(m < l for m in tr))
return tr
def main():
p = Pool(len(data)) #number of processes = number of CPUs
keys, values= zip(*data.items()) #ordered keys and values
processed_values= p.map( f, values )
result= dict( zip(keys, processed_values ) )
p.close() # no more tasks
p.join() # wrap up current tasks
print(result)
if __name__ == '__main__':
import csv
dicchunk = {*****} #my dictionary
main()