我正在寻找算法来减少节点的折线、线(循环或不循环)的 LOD。简而言之,我想获取高分辨率的海岸线数据,并能够将其 LOD 降低数百或数千倍以进行小规模渲染。
我发现了多边形缩减算法(但它们需要三角形)和拉普拉斯平滑,但这似乎并不是我所需要的。
我正在寻找算法来减少节点的折线、线(循环或不循环)的 LOD。简而言之,我想获取高分辨率的海岸线数据,并能够将其 LOD 降低数百或数千倍以进行小规模渲染。
我发现了多边形缩减算法(但它们需要三角形)和拉普拉斯平滑,但这似乎并不是我所需要的。
我修改了culebrón 答案中的代码,不再需要 Vec2D/Line 类,而是将点作为元组列表处理。
代码稍微不整洁,但更短,更快(对于 900 分,原始代码需要 2966 毫秒,而这个版本需要 500 毫秒 - 仍然比我想要的慢一点,但有所改进)
def _vec2d_dist(p1, p2):
return (p1[0] - p2[0])**2 + (p1[1] - p2[1])**2
def _vec2d_sub(p1, p2):
return (p1[0]-p2[0], p1[1]-p2[1])
def _vec2d_mult(p1, p2):
return p1[0]*p2[0] + p1[1]*p2[1]
def ramerdouglas(line, dist):
"""Does Ramer-Douglas-Peucker simplification of a curve with `dist`
threshold.
`line` is a list-of-tuples, where each tuple is a 2D coordinate
Usage is like so:
>>> myline = [(0.0, 0.0), (1.0, 2.0), (2.0, 1.0)]
>>> simplified = ramerdouglas(myline, dist = 1.0)
"""
if len(line) < 3:
return line
(begin, end) = (line[0], line[-1]) if line[0] != line[-1] else (line[0], line[-2])
distSq = []
for curr in line[1:-1]:
tmp = (
_vec2d_dist(begin, curr) - _vec2d_mult(_vec2d_sub(end, begin), _vec2d_sub(curr, begin)) ** 2 / _vec2d_dist(begin, end))
distSq.append(tmp)
maxdist = max(distSq)
if maxdist < dist ** 2:
return [begin, end]
pos = distSq.index(maxdist)
return (ramerdouglas(line[:pos + 2], dist) +
ramerdouglas(line[pos + 1:], dist)[1:])
我发现并且很可能会使用的解决方案是Ramer-Douglas-Peucker算法。它用于PostGIS
我已经在 Python 中发布了我自己的实现(站点当前关闭,以下内容来自 archive.org)
#!/usr/bin/python
"""Ramer-Douglas-Peucker line simplification demo.
Dmitri Lebedev, detail@ngs.ru
http://ryba4.com/python/ramer-douglas-peucker
2010-04-17"""
def ramerdouglas(line, dist):
"""Does Ramer-Douglas-Peucker simplification of
a line with `dist` threshold.
`line` must be a list of Vec objects,
all of the same type (either 2d or 3d)."""
if len(line) < 3:
return line
begin, end = line[0], line[-1]
distSq = [begin.distSq(curr) -
((end - begin) * (curr - begin)) ** 2 /
begin.distSq(end) for curr in line[1:-1]]
maxdist = max(distSq)
if maxdist < dist ** 2:
return [begin, end]
pos = distSq.index(maxdist)
return (ramerdouglas(line[:pos + 2], dist) +
ramerdouglas(line[pos + 1:], dist)[1:])
class Line:
"""Polyline. Contains a list of points and outputs
a simplified version of itself."""
def __init__(self, points):
pointclass = points[0].__class__
for i in points[1:]:
if i.__class__ != pointclass:
raise TypeError("""All points in a Line
must have the same type""")
self.points = points
def simplify(self, dist):
if self.points[0] != self.points[-1]:
points = ramerdouglas(self.points, dist)
else:
points = ramerdouglas(
self.points[:-1], dist) + self.points[-1:]
return self.__class__(points)
def __repr__(self):
return '{0}{1}'.format(self.__class__.__name__,
tuple(self.points))
class Vec:
"""Generic vector class for n-dimensional vectors
for any natural n."""
def __eq__(self, obj):
"""Equality check."""
if self.__class__ == obj.__class__:
return self.coords == obj.coords
return False
def __repr__(self):
"""String representation. The string is executable as Python
code and makes the same vector."""
return '{0}{1}'.format(self.__class__.__name__, self.coords)
def __add__(self, obj):
"""Add a vector."""
if not isinstance(obj, self.__class__):
raise TypeError
return self.__class__(*map(sum, zip(self.coords, obj.coords)))
def __neg__(self):
"""Reverse the vector."""
return self.__class__(*[-i for i in self.coords])
def __sub__(self, obj):
"""Substract object from self."""
if not isinstance(obj, self.__class__):
raise TypeError
return self + (- obj)
def __mul__(self, obj):
"""If obj is scalar, scales the vector.
If obj is vector returns the scalar product."""
if isinstance(obj, self.__class__):
return sum([a * b for (a, b) in zip(self.coords, obj.coords)])
return self.__class__(*[i * obj for i in self.coords])
def dist(self, obj = None):
"""Distance to another object. Leave obj empty to get
the length of vector from point 0."""
return self.distSq(obj) ** 0.5
def distSq(self, obj = None):
""" Square of distance. Use this method to save
calculations if you don't need to calculte an extra square root."""
if obj is None:
obj = self.__class__(*[0]*len(self.coords))
elif not isinstance(obj, self.__class__):
raise TypeError('Parameter must be of the same class')
# simple memoization to save extra calculations
if obj.coords not in self.distSqMem:
self.distSqMem[obj.coords] = sum([(s - o) ** 2 for (s, o) in
zip(self.coords, obj.coords)])
return self.distSqMem[obj.coords]
class Vec3D(Vec):
"""3D vector"""
def __init__(self, x, y, z):
self.coords = x, y, z
self.distSqMem = {}
class Vec2D(Vec):
"""2D vector"""
def __init__(self, x, y):
self.coords = x, y
self.distSqMem = {}
if __name__ == '__main__':
coast = Line([
Vec2D( 6.247872 , 11.316756 ),
Vec2D( 6.338566 , 11.316756 ),
Vec2D( 6.633323 , 11.205644 ),
Vec2D( 6.724018 , 11.205644 ),
Vec2D( 6.792039 , 11.205644 ),
Vec2D( 7.154817 , 11.372311 ),
Vec2D( 7.313532 , 11.400089 ),
Vec2D( 7.381553 , 11.344533 ),
Vec2D( 7.336206 , 11.288978 ),
Vec2D( 7.200164 , 11.288978 ),
Vec2D( 7.154817 , 11.261200 ),
Vec2D( 7.132143 , 11.233422 ),
Vec2D( 7.154817 , 11.150089 ),
Vec2D( 7.268185 , 11.177867 ),
Vec2D( 7.313532 , 11.122311 ),
Vec2D( 7.404227 , 11.150089 ),
Vec2D( 7.472248 , 11.094533 ),
Vec2D( 7.767005 , 10.900089 ),
Vec2D( 7.758951 , 10.864989 ),
Vec2D( 7.752684 , 10.837656 ),
Vec2D( 7.426900 , 10.927867 ),
Vec2D( 6.519955 , 10.927867 ),
Vec2D( 6.429261 , 10.900089 ),
Vec2D( 6.315893 , 10.955644 ),
Vec2D( 6.270545 , 10.955644 ),
Vec2D( 6.247872 , 10.927867 ),
Vec2D( 6.111830 , 11.011200 ),
Vec2D( 6.066483 , 11.066756 ),
Vec2D( 5.862420 , 11.038978 ),
Vec2D( 5.817073 , 10.955644 ),
Vec2D( 5.771726 , 10.900089 ),
Vec2D( 5.862420 , 10.761200 ),
Vec2D( 5.975788 , 10.733422 ),
Vec2D( 6.157177 , 10.566756 ),
Vec2D( 6.247872 , 10.511200 ),
Vec2D( 6.293219 , 10.427867 ),
Vec2D( 6.315893 , 10.233422 ),
Vec2D( 6.315893 , 10.177867 ),
Vec2D( 6.542629 , 9.844533 ),
Vec2D( 6.587976 , 9.761200 ),
Vec2D( 6.610650 , 9.288978 ),
Vec2D( 6.542629 , 9.066756 ),
Vec2D( 6.565303 , 8.900089 ),
Vec2D( 6.519955 , 8.816756 ),
Vec2D( 6.542629 , 8.761200 ),
Vec2D( 6.565303 , 8.733422 ),
Vec2D( 6.429261 , 8.427867 ),
Vec2D( 6.474608 , 8.316756 ),
Vec2D( 6.724018 , 8.288978 ),
Vec2D( 6.882733 , 8.538978 ),
Vec2D( 6.973428 , 8.594533 ),
Vec2D( 6.996101 , 8.622311 ),
Vec2D( 7.200164 , 8.650089 ),
Vec2D( 7.290859 , 8.650089 ),
Vec2D( 7.426900 , 8.483422 ),
Vec2D( 7.404227 , 8.455644 ),
Vec2D( 7.245511 , 8.511200 ),
Vec2D( 6.996101 , 8.427867 ),
Vec2D( 7.041449 , 8.372311 ),
Vec2D( 7.154817 , 8.455644 ),
Vec2D( 7.200164 , 8.455644 ),
Vec2D( 7.245511 , 8.455644 ),
Vec2D( 7.381553 , 8.316756 ),
Vec2D( 7.381553 , 8.261200 ),
Vec2D( 7.404227 , 8.233422 ),
Vec2D( 7.494921 , 8.205644 ),
Vec2D( 7.767005 , 8.288978 ),
Vec2D( 7.948394 , 8.233422 ),
Vec2D( 8.016415 , 8.261200 ),
Vec2D( 8.197804 , 8.094533 ),
Vec2D( 8.084435 , 7.816756 ),
Vec2D( 8.152456 , 7.733422 ),
Vec2D( 8.175130 , 7.650089 ),
Vec2D( 8.175130 , 7.511200 ),
Vec2D( 8.311172 , 7.427867 ),
Vec2D( 8.311172 , 7.372311 ),
Vec2D( 8.651276 , 7.372311 ),
Vec2D( 8.923360 , 7.316756 ),
Vec2D( 8.900686 , 7.261200 ),
Vec2D( 8.809991 , 7.261200 ),
Vec2D( 8.472735 , 7.171122 ),
Vec2D( 8.333845 , 7.038978 ),
Vec2D( 8.282022 , 6.981100 ),
Vec2D( 8.254778 , 6.848911 ),
Vec2D( 8.265824 , 6.816756 ),
Vec2D( 8.239206 , 6.711211 ),
Vec2D( 8.219743 , 6.612067 ),
Vec2D( 8.130227 , 6.433044 ),
Vec2D( 8.084435 , 6.316756 ),
Vec2D( 8.107109 , 6.288978 ),
Vec2D( 7.948394 , 6.177867 ),
Vec2D( 7.925720 , 5.983422 ),
Vec2D( 7.857699 , 5.816756 ),
Vec2D( 7.835026 , 5.788978 ),
Vec2D( 7.857699 , 5.511200 ),
Vec2D( 7.812352 , 5.400089 ),
Vec2D( 7.812352 , 5.344533 ),
Vec2D( 7.812352 , 5.177867 ),
Vec2D( 8.084435 , 4.733422 ),
Vec2D( 8.107109 , 4.622311 ),
Vec2D( 7.857699 , 4.344533 ),
Vec2D( 7.630963 , 4.261200 ),
Vec2D( 7.540268 , 4.177867 ),
Vec2D( 7.494921 , 4.150089 ),
Vec2D( 7.449574 , 4.150089 ),
Vec2D( 7.404227 , 4.150089 ),
Vec2D( 7.336206 , 4.094533 ),
Vec2D( 7.313532 , 4.066756 ),
Vec2D( 7.041449 , 4.011200 ),
Vec2D( 6.905407 , 3.955644 ),
Vec2D( 6.950754 , 3.900089 ),
Vec2D( 7.200164 , 3.927867 ),
Vec2D( 7.630963 , 3.872311 ),
Vec2D( 7.721657 , 3.872311 ),
Vec2D( 7.948394 , 3.788978 ),
Vec2D( 7.993741 , 3.705644 ),
Vec2D( 7.971067 , 3.677867 ),
Vec2D( 7.925720 , 3.622311 ),
Vec2D( 8.175130 , 3.705644 ),
Vec2D( 8.401866 , 3.650089 ),
Vec2D( 8.492561 , 3.650089 ),
Vec2D( 8.605929 , 3.538978 ),
Vec2D( 8.651276 , 3.566756 ),
Vec2D( 8.855339 , 3.372311 ),
Vec2D( 8.900686 , 3.316756 ),
Vec2D( 8.900686 , 3.150089 ),
Vec2D( 8.787318 , 2.900089 ),
Vec2D( 8.787318 , 2.844533 ),
Vec2D( 8.946033 , 2.816756 ),
Vec2D( 8.991380 , 2.788978 ),
Vec2D( 9.014054 , 2.705644 ),
Vec2D( 8.886928 , 2.524989 ),
Vec2D( 8.832665 , 2.538978 ),
Vec2D( 8.809991 , 2.455644 ),
Vec2D( 8.923360 , 2.538978 ),
Vec2D( 9.014054 , 2.400089 ),
Vec2D( 9.308811 , 2.288978 ),
Vec2D( 9.399506 , 2.261200 ),
Vec2D( 9.512874 , 2.122311 ),
Vec2D( 9.535548 , 1.983422 ),
Vec2D( 9.512874 , 1.955644 ),
Vec2D( 9.467527 , 1.816756 ),
Vec2D( 9.036728 , 1.816756 ),
Vec2D( 8.991380 , 1.927867 ),
Vec2D( 8.946033 , 1.955644 ),
Vec2D( 8.900686 , 1.983422 ),
Vec2D( 8.946033 , 2.122311 ),
Vec2D( 8.968707 , 2.150089 ),
Vec2D( 9.195443 , 1.927867 ),
Vec2D( 9.354158 , 1.955644 ),
Vec2D( 9.376832 , 2.038978 ),
Vec2D( 9.376832 , 2.094533 ),
Vec2D( 9.240790 , 2.205644 ),
Vec2D( 9.195443 , 2.205644 ),
Vec2D( 9.263464 , 2.150089 ),
Vec2D( 9.240790 , 2.122311 ),
Vec2D( 9.195443 , 2.122311 ),
Vec2D( 9.104749 , 2.122311 ),
Vec2D( 8.900686 , 2.316756 ),
Vec2D( 8.787318 , 2.344533 ),
Vec2D( 8.696623 , 2.372311 ),
Vec2D( 8.651276 , 2.427867 ),
Vec2D( 8.719297 , 2.455644 ),
Vec2D( 8.787318 , 2.650089 ),
Vec2D( 8.832665 , 2.705644 ),
Vec2D( 8.605929 , 2.677867 ),
Vec2D( 8.537908 , 2.788978 ),
Vec2D( 8.333845 , 2.788978 ),
Vec2D( 7.925720 , 2.316756 ),
Vec2D( 7.925720 , 2.261200 ),
Vec2D( 7.903046 , 2.233422 ),
Vec2D( 7.857699 , 2.233422 ),
Vec2D( 7.857699 , 2.177867 ),
Vec2D( 7.789678 , 1.983422 ),
Vec2D( 7.812352 , 1.788978 ),
Vec2D( 7.948394 , 1.538978 ),
Vec2D( 7.971067 , 1.511200 ),
Vec2D( 8.129783 , 1.511200 ),
Vec2D( 8.243151 , 1.594533 ),
Vec2D( 8.333845 , 1.594533 ),
Vec2D( 8.424540 , 1.622311 ),
Vec2D( 8.515234 , 1.566756 ),
Vec2D( 8.673950 , 1.400089 ),
Vec2D( 8.771174 , 1.291756 ),
Vec2D( 8.828938 , 1.119878 ),
Vec2D( 8.762504 , 0.972544 ),
Vec2D( 9.238614 , 0.759633 ),
Vec2D( 9.492323 , 0.627022 ),
Vec2D( 9.820891 , 0.644711 ),
Vec2D( 10.376567 , 0.800622 ),
Vec2D( 10.651961 , 1.085978 ),
Vec2D( 10.762173 , 1.132022 ),
Vec2D( 10.943045 , 1.095989 ),
Vec2D( 11.256739 , 0.999878 ),
Vec2D( 11.576074 , 0.761611 ),
Vec2D( 11.768247 , 0.425211 ),
Vec2D( 11.960165 , 0.074778 ),
Vec2D( 11.953907 , 0.000000 ),
Vec2D( 11.629411 , 0.258767 ),
Vec2D( 11.229920 , 0.582278 ),
Vec2D( 11.001633 , 0.564300 ),
Vec2D( 10.868476 , 0.447478 ),
Vec2D( 10.633849 , 0.541833 ),
Vec2D( 10.513370 , 0.672133 ),
Vec2D( 11.188700 , 0.820078 ),
Vec2D( 11.194014 , 0.859656 ),
Vec2D( 11.118212 , 0.905822 ),
Vec2D( 10.874860 , 0.930311 ),
Vec2D( 10.427319 , 0.716522 ),
Vec2D( 10.023620 , 0.374211 ),
Vec2D( 9.434614 , 0.360144 ),
Vec2D( 8.455131 , 0.859544 ),
Vec2D( 8.180481 , 0.920500 ),
Vec2D( 7.902529 , 1.115078 ),
Vec2D( 7.823108 , 1.269800 ),
Vec2D( 7.830482 , 1.403778 ),
Vec2D( 7.791937 , 1.496744 ),
Vec2D( 7.767005 , 1.538978 ),
Vec2D( 7.676310 , 1.622311 ),
Vec2D( 7.653637 , 1.650089 ),
Vec2D( 7.585616 , 1.955644 ),
Vec2D( 7.562942 , 1.983422 ),
Vec2D( 7.562942 , 2.233422 ),
Vec2D( 7.608289 , 2.400089 ),
Vec2D( 7.630963 , 2.427867 ),
Vec2D( 7.608289 , 2.538978 ),
Vec2D( 7.585616 , 2.566756 ),
Vec2D( 7.653637 , 2.705644 ),
Vec2D( 7.630963 , 2.816756 ),
Vec2D( 7.336206 , 3.011200 ),
Vec2D( 7.290859 , 3.011200 ),
Vec2D( 7.245511 , 3.011200 ),
Vec2D( 7.041449 , 2.955644 ),
Vec2D( 6.928081 , 2.816756 ),
Vec2D( 6.928081 , 2.733422 ),
Vec2D( 6.905407 , 2.622311 ),
Vec2D( 6.860060 , 2.677867 ),
Vec2D( 6.814712 , 2.677867 ),
Vec2D( 6.678671 , 2.677867 ),
Vec2D( 6.678671 , 2.733422 ),
Vec2D( 6.769365 , 2.733422 ),
Vec2D( 6.814712 , 2.733422 ),
Vec2D( 6.792039 , 2.788978 ),
Vec2D( 6.293219 , 3.066756 ),
Vec2D( 6.225198 , 3.122311 ),
Vec2D( 6.202525 , 3.233422 ),
Vec2D( 6.134504 , 3.344533 ),
Vec2D( 5.907767 , 3.261200 ),
Vec2D( 5.862420 , 3.288978 ),
Vec2D( 6.043809 , 3.427867 ),
Vec2D( 6.021136 , 3.483422 ),
Vec2D( 5.975788 , 3.483422 ),
Vec2D( 5.930441 , 3.511200 ),
Vec2D( 5.953115 , 3.566756 ),
Vec2D( 5.975788 , 3.594533 ),
Vec2D( 5.749052 , 3.788978 ),
Vec2D( 5.703705 , 3.788978 ),
Vec2D( 5.635684 , 3.788978 ),
Vec2D( 5.703705 , 3.844533 ),
Vec2D( 5.703705 , 4.011200 ),
Vec2D( 5.499642 , 4.011200 ),
Vec2D( 5.862420 , 4.372311 ),
Vec2D( 5.975788 , 4.427867 ),
Vec2D( 6.021136 , 4.427867 ),
Vec2D( 6.089156 , 4.538978 ),
Vec2D( 6.111830 , 4.566756 ),
Vec2D( 6.089156 , 4.650089 ),
Vec2D( 5.998462 , 4.650089 ),
Vec2D( 5.817073 , 4.788978 ),
Vec2D( 5.771726 , 4.816756 ),
Vec2D( 5.681031 , 4.816756 ),
Vec2D( 5.749052 , 4.927867 ),
Vec2D( 5.749052 , 5.038978 ),
Vec2D( 5.839747 , 5.177867 ),
Vec2D( 5.998462 , 5.233422 ),
Vec2D( 6.225198 , 5.233422 ),
Vec2D( 6.270545 , 5.233422 ),
Vec2D( 6.383914 , 5.288978 ),
Vec2D( 6.406587 , 5.372311 ),
Vec2D( 6.429261 , 5.400089 ),
Vec2D( 6.587976 , 5.483422 ),
Vec2D( 6.670626 , 5.490000 ),
Vec2D( 6.700845 , 5.564100 ),
Vec2D( 6.860060 , 5.927867 ),
Vec2D( 6.860060 , 6.038978 ),
Vec2D( 6.950754 , 6.205644 ),
Vec2D( 6.973428 , 6.316756 ),
Vec2D( 7.041449 , 6.344533 ),
Vec2D( 7.064122 , 6.455644 ),
Vec2D( 7.116072 , 6.541989 ),
Vec2D( 7.114313 , 6.603667 ),
Vec2D( 7.025305 , 6.741422 ),
Vec2D( 6.736924 , 6.701367 ),
Vec2D( 6.641658 , 6.741467 ),
Vec2D( 6.500574 , 6.761389 ),
Vec2D( 6.435410 , 6.733422 ),
Vec2D( 6.224291 , 6.728556 ),
Vec2D( 6.191759 , 6.738989 ),
Vec2D( 6.099124 , 6.755000 ),
Vec2D( 6.041805 , 6.749733 ),
Vec2D( 6.001672 , 6.742967 ),
Vec2D( 5.905382 , 6.718300 ),
Vec2D( 5.817073 , 6.677867 ),
Vec2D( 5.611713 , 6.686622 ),
Vec2D( 5.401366 , 6.864333 ),
Vec2D( 5.386274 , 6.927867 ),
Vec2D( 5.356608 , 6.981811 ),
Vec2D( 5.404095 , 7.111822 ),
Vec2D( 5.561958 , 7.216133 ),
Vec2D( 5.660643 , 7.244722 ),
Vec2D( 5.366149 , 7.489478 ),
Vec2D( 5.340927 , 7.511200 ),
Vec2D( 5.114998 , 7.592867 ),
Vec2D( 4.870667 , 7.692033 ),
Vec2D( 4.746560 , 7.781856 ),
Vec2D( 4.708060 , 7.760867 ),
Vec2D( 4.692225 , 7.802500 ),
Vec2D( 4.607090 , 7.849044 ),
Vec2D( 4.481324 , 7.879711 ),
Vec2D( 4.340031 , 8.093378 ),
Vec2D( 4.181171 , 8.158044 ),
Vec2D( 4.116415 , 8.200800 ),
Vec2D( 4.081135 , 8.195278 ),
Vec2D( 4.090912 , 8.272500 ),
Vec2D( 4.032232 , 8.378311 ),
Vec2D( 3.779566 , 8.791278 ),
Vec2D( 3.769654 , 8.849022 ),
Vec2D( 3.598177 , 8.955178 ),
Vec2D( 3.576828 , 9.059633 ),
Vec2D( 3.527037 , 9.066756 ),
Vec2D( 3.498069 , 9.082022 ),
Vec2D( 3.541865 , 9.174211 ),
Vec2D( 3.542409 , 9.234411 ),
Vec2D( 3.576275 , 9.262711 ),
Vec2D( 3.582279 , 9.287744 ),
Vec2D( 3.390995 , 9.316756 ),
Vec2D( 3.209606 , 9.344533 ),
Vec2D( 3.100836 , 9.367511 ),
Vec2D( 2.957466 , 9.370756 ),
Vec2D( 2.870844 , 9.366222 ),
Vec2D( 2.777211 , 9.285222 ),
Vec2D( 2.744851 , 9.285900 ),
Vec2D( 2.775397 , 9.294867 ),
Vec2D( 2.832661 , 9.341156 ),
Vec2D( 2.868114 , 9.373300 ),
Vec2D( 2.869502 , 9.400089 ),
Vec2D( 2.794434 , 9.420178 ),
Vec2D( 2.714423 , 9.440078 ),
Vec2D( 2.641124 , 9.441944 ),
Vec2D( 2.572096 , 9.428378 ),
Vec2D( 2.548379 , 9.418600 ),
Vec2D( 2.573130 , 9.388211 ),
Vec2D( 2.563126 , 9.333567 ),
Vec2D( 2.535855 , 9.320067 ),
Vec2D( 2.517670 , 9.282778 ),
Vec2D( 2.479488 , 9.260278 ),
Vec2D( 2.483125 , 9.239067 ),
Vec2D( 2.464034 , 9.224278 ),
Vec2D( 2.468586 , 9.180556 ),
Vec2D( 2.443129 , 9.168989 ),
Vec2D( 2.439084 , 9.147456 ),
Vec2D( 2.448389 , 9.129344 ),
Vec2D( 2.444897 , 9.109600 ),
Vec2D( 2.450720 , 9.097256 ),
Vec2D( 2.444897 , 9.080389 ),
Vec2D( 2.447808 , 9.045822 ),
Vec2D( 2.424536 , 9.024011 ),
Vec2D( 2.415811 , 9.000133 ),
Vec2D( 2.442457 , 8.957422 ),
Vec2D( 2.429887 , 8.946567 ),
Vec2D( 2.455028 , 8.894556 ),
Vec2D( 2.435936 , 8.879078 ),
Vec2D( 2.413136 , 8.853411 ),
Vec2D( 2.410805 , 8.836944 ),
Vec2D( 2.412202 , 8.822133 ),
Vec2D( 2.387533 , 8.789544 ),
Vec2D( 2.386608 , 8.776044 ),
Vec2D( 2.398706 , 8.757278 ),
Vec2D( 2.373103 , 8.739511 ),
Vec2D( 2.387070 , 8.769467 ),
Vec2D( 2.375434 , 8.784611 ),
Vec2D( 2.358674 , 8.785922 ),
Vec2D( 2.337270 , 8.793167 ),
Vec2D( 2.365195 , 8.790533 ),
Vec2D( 2.399169 , 8.821478 ),
Vec2D( 2.396376 , 8.837933 ),
Vec2D( 2.408946 , 8.879078 ),
Vec2D( 2.432218 , 8.894878 ),
Vec2D( 2.414995 , 8.963022 ),
Vec2D( 2.390961 , 8.983722 ),
Vec2D( 2.340091 , 8.969389 ),
Vec2D( 2.332091 , 8.946244 ),
Vec2D( 2.340091 , 8.927722 ),
Vec2D( 2.332091 , 8.912289 ),
Vec2D( 2.316093 , 8.904067 ),
Vec2D( 2.311730 , 8.874744 ),
Vec2D( 2.288975 , 8.861244 ),
Vec2D( 2.247727 , 8.856233 ),
Vec2D( 2.233180 , 8.861889 ),
Vec2D( 2.209436 , 8.859233 ),
Vec2D( 2.231003 , 8.871144 ),
Vec2D( 2.265911 , 8.873200 ),
Vec2D( 2.277548 , 8.869600 ),
Vec2D( 2.290635 , 8.873711 ),
Vec2D( 2.299360 , 8.904578 ),
Vec2D( 2.268088 , 8.909622 ),
Vec2D( 2.247727 , 8.925256 ),
Vec2D( 2.225734 , 8.920756 ),
Vec2D( 2.208747 , 8.909622 ),
Vec2D( 2.203768 , 8.921811 ),
Vec2D( 2.214352 , 8.931822 ),
Vec2D( 2.197138 , 8.933811 ),
Vec2D( 2.148725 , 8.907478 ),
Vec2D( 2.134577 , 8.904844 ),
Vec2D( 2.113354 , 8.917222 ),
Vec2D( 2.095107 , 8.918800 ),
Vec2D( 2.079961 , 8.912944 ),
Vec2D( 2.060761 , 8.913356 ),
Vec2D( 2.034577 , 8.902656 ),
Vec2D( 1.983589 , 8.895400 ),
Vec2D( 2.033997 , 8.913356 ),
Vec2D( 2.062502 , 8.918700 ),
Vec2D( 2.092758 , 8.929811 ),
Vec2D( 2.148090 , 8.928756 ),
Vec2D( 2.168397 , 8.937878 ),
Vec2D( 2.146421 , 8.965533 ),
Vec2D( 2.182173 , 8.943933 ),
Vec2D( 2.201537 , 8.951311 ),
Vec2D( 2.239138 , 8.938400 ),
Vec2D( 2.267063 , 8.944989 ),
Vec2D( 2.284939 , 8.925767 ),
Vec2D( 2.306887 , 8.926022 ),
Vec2D( 2.311086 , 8.936356 ),
Vec2D( 2.296312 , 8.952489 ),
Vec2D( 2.317254 , 8.981122 ),
Vec2D( 2.334939 , 9.003844 ),
Vec2D( 2.374500 , 9.014044 ),
Vec2D( 2.386136 , 9.034778 ),
Vec2D( 2.401962 , 9.044656 ),
Vec2D( 2.418723 , 9.044889 ),
Vec2D( 2.426287 , 9.054878 ),
Vec2D( 2.411739 , 9.063522 ),
Vec2D( 2.426867 , 9.099311 ),
Vec2D( 2.398362 , 9.125233 ),
Vec2D( 2.373339 , 9.121944 ),
Vec2D( 2.403595 , 9.134289 ),
Vec2D( 2.417680 , 9.165778 ),
Vec2D( 2.425860 , 9.192778 ),
Vec2D( 2.423783 , 9.231400 ),
Vec2D( 2.400330 , 9.237022 ),
Vec2D( 2.419494 , 9.243567 ),
Vec2D( 2.429815 , 9.246711 ),
Vec2D( 2.449495 , 9.245489 ),
Vec2D( 2.457676 , 9.289856 ),
Vec2D( 2.481311 , 9.298211 ),
Vec2D( 2.488585 , 9.334211 ),
Vec2D( 2.520255 , 9.353822 ),
Vec2D( 2.520400 , 9.369944 ),
Vec2D( 2.494960 , 9.432511 ),
Vec2D( 2.463671 , 9.469200 ),
Vec2D( 2.406950 , 9.500578 ),
Vec2D( 2.240907 , 9.536433 ),
Vec2D( 2.129969 , 9.569467 ),
Vec2D( 2.031530 , 9.607422 ),
Vec2D( 1.932328 , 9.658044 ),
Vec2D( 1.835167 , 9.695656 ),
Vec2D( 1.746196 , 9.760744 ),
Vec2D( 1.667446 , 9.789667 ),
Vec2D( 1.575400 , 9.797622 ),
Vec2D( 1.562104 , 9.828722 ),
Vec2D( 1.531422 , 9.846800 ),
Vec2D( 1.415859 , 9.888744 ),
Vec2D( 1.315206 , 9.942167 ),
Vec2D( 1.175573 , 10.083667 ),
Vec2D( 1.147394 , 10.090267 ),
Vec2D( 1.118064 , 10.086567 ),
Vec2D( 0.990883 , 9.998400 ),
Vec2D( 0.778930 , 9.990856 ),
Vec2D( 0.592924 , 10.033144 ),
Vec2D( 0.507490 , 10.125422 ),
Vec2D( 0.419562 , 10.320811 ),
Vec2D( 0.375403 , 10.344533 ),
Vec2D( 0.276464 , 10.431189 ),
Vec2D( 0.220170 , 10.534911 ),
Vec2D( 0.181271 , 10.571000 ),
Vec2D( 0.153745 , 10.620156 ),
Vec2D( 0.114973 , 10.653889 ),
Vec2D( 0.103274 , 10.707756 ),
Vec2D( 0.097914 , 10.761511 ),
Vec2D( 0.076256 , 10.811522 ),
Vec2D( 0.061935 , 10.867833 ),
Vec2D( 0.000000 , 10.960167 )
])
distances = (0, .05, .1, .25) # threshold sizes in kilometres
import csv
for d in distances:
simple = coast.simplify(d) if d > 0 else coast
with open('poly-{0}.csv'.format(d), 'w') as output_doc:
writer = csv.writer(output_doc, dialect='excel')
for pt in simple.points:
writer.writerow(pt.coords)
当我考虑将贝塞尔曲线变成直线段时,我最终做的是定义曲线之间的最大距离和曲线两点之间的直线。从一个点作为一个端点开始,沿着曲线滑动另一端,直到再滑动超过最大距离。然后再做一次,使用第二个(等等)点,直到你覆盖了整个曲线。
您应该能够通过简单地增加线段和多段线之间允许的距离来生成多个 LOD。
我开发了一个非常简单的算法,使用给定点到以下点的距离来决定将它们包含在渲染中是否有意义。根据当前比例,您可以关联转换模型所需的点之间的最小距离。
我喜欢根据线段在点的任一侧形成的角度对点进行排序,然后迭代地删除具有最浅角度的点,直到达到某个阈值。我认为 O(n log(n)) 与 RDP 方法的 O(n^2) 相比,并且启动的常数更小。:)
如果您想为更长的线段赋予更多的权重(合意性),甚至可以通过线段长度来缩放角度(实际上以这种方式计算更容易)。
给定 p0, p1, p2, p1 的权重为 ((p0 - p1) dot (p2 - p1)),如果您不想按长度加权,请对差异进行归一化。(与距离到线相比,它便宜得多,结果可能相同。)
添加到大量答案中。我在这个 github repo 中找到了一个 javascript 实现:https ://github.com/mourner/simplify-js
还列出了 Ramer-Douglas-Peucker 算法在不同语言中的不同实现。
迟到了,但这是道格拉斯·普克算法的 Java 实现。
关于culebron 的回答,递归调用是否正确?据我了解,RDP 将一行分成两条不同的行:开始到最大值,最大值到结束。
但是查看调用,其中 pos 是列表中最大距离的索引......
return (ramerdouglas(line[:pos + 2], dist) +
ramerdouglas(line[pos + 1:], dist)[1:])
而是从开始到 max+1,从 max+1 到结束。难道不应该...
return (ramerdouglas(line[:pos + 1], dist) +
ramerdouglas(line[pos:], dist)[1:])