6

在我的应用程序中,我正在尝试实现一个动画系统。在这个系统中,动画被表示为一个循环的帧列表:

data CyclicList a = CL a [a]

我们可以(低效地)按如下方式推进动画:

advance :: CyclicList a -> CyclicList a
advance (CL x []) = CL x []
advance (CL x (z:zs)) = CL z (zs ++ [x])

现在,我很确定这个数据类型是一个comonad:

instance Functor CyclicList where
  fmap f (CL x xs) = CL (f x) (map f xs)

cyclicFromList :: [a] -> CyclicList a
cyclicFromList [] = error "Cyclic list must have one element!"
cyclicFromList (x:xs) = CL x xs

cyclicLength :: CyclicList a -> Int
cyclicLength (CL _ xs) = length xs + 1

listCycles :: CyclicList a -> [CyclicList a]
listCycles cl = let
  helper 0 _ = []
  helper n cl' = cl' : (helper (n-1) $ advance cl')
 in helper (cyclicLength cl) cl

instance Comonad CyclicList where
  extract (CL x _) = x
  duplicate = cyclicFromList . listCycles

我的问题是:我从使用comonad 实例中获得了什么样的好处(如果有的话)?

4

1 回答 1

3

提供类型类或实现接口的优点是,为使用该类型类或接口而编写的代码无需任何修改即可使用您的代码。

可以用什么程序编写Comonad?AComonad提供了一种方法来检查当前位置的值(不观察其邻居),使用或extract观察每个位置的邻域。如果没有任何附加功能,这并不是非常有用。但是,如果我们还需要其他函数以及实例,我们可以编写依赖于本地数据和来自其他地方的数据的程序。例如,如果我们需要允许我们更改位置的函数,例如 your ,我们可以编写仅依赖于数据的本地结构而不依赖于数据结构本身的程序。duplicateextendComonadadvance

举一个具体的例子,考虑一个用Comonad以下Bidirectional类编写的元胞自动机程序:

class Bidirectional c where
    forward  :: c a -> Maybe (c a)
    backward :: c a -> Maybe (c a)

该程序可以将其与 一起Comonad用于extract存储在单元格中的数据并探索单元格forwardbackward当前单元格。它可以duplicate用来捕获每个单元的邻域并fmap检查该邻域。这种组合fmap f . duplicateextract f

这是这样一个程序。rule'仅对示例感兴趣;它仅使用左右值在邻域上实现元胞自动机规则。rule在给定类的情况下从邻域中提取数据,并对每个邻域运行规则。slice拉出更大的社区,以便我们可以轻松地展示它们。simulate运行模拟,显示每一代的这些较大的邻域。

rule' :: Word8 -> Bool -> Bool -> Bool -> Bool
rule' x l m r = testBit x ((if l then 4 else 0) .|. (if m then 2 else 0) .|. (if r then 1 else 0))

rule :: (Comonad w, Bidirectional w) => Word8 -> w Bool -> w Bool
rule x = extend go
    where
        go w = rule' x (maybe False extract . backward $ w) (extract w) (maybe False extract . forward $ w)

slice :: (Comonad w, Bidirectional w) => Int -> Int -> a -> w a -> [a]
slice l r a w = sliceL l w (extract w : sliceR r w)
    where
        sliceR r w | r > 0 = case (forward w) of
            Nothing -> take r (repeat a)
            Just w' -> extract w' : sliceR (r-1) w'
        sliceR _ _ = []
        sliceL l w r | l > 0 = case (backward w) of
            Nothing -> take l (repeat a) ++ r
            Just w' -> sliceL (l-1) w' (extract w':r)
        sliceL _ _ r = r

simulate :: (Comonad w, Bidirectional w) => (w Bool -> w Bool) -> Int -> Int -> Int -> w Bool -> IO ()
simulate f l r x w = mapM_ putStrLn . map (map (\x -> if x then '1' else '0') . slice l r False) . take x . iterate f $ w

该程序可能旨在与列表中的以下内容一起Bidirectional Comonad使用Zipper

data Zipper a = Zipper {
    heads :: [a],
    here  :: a,
    tail  :: [a]
} deriving Functor

instance Bidirectional Zipper where
    forward (Zipper _ _ []    ) = Nothing
    forward (Zipper l h (r:rs)) = Just $ Zipper (h:l) r rs
    backward (Zipper []     _ _) = Nothing
    backward (Zipper (l:ls) h r) = Just $ Zipper ls l (h:r)

instance Comonad Zipper where
    extract = here
    duplicate (Zipper l h r) = Zipper (goL (h:r) l) (Zipper l h r) (goR (h:l) r)
        where
            goL r []    = []
            goL r (h:l) = Zipper l h r : goL (h:r) l
            goR l []    = []
            goR l (h:r) = Zipper l h r : goR (h:l) r

但也可以与CyclicList Bidirectional Comonad.

data CyclicList a = CL a (Seq a)
    deriving (Show, Eq, Functor)

instance Bidirectional CyclicList where
    forward (CL x xs) = Just $ case viewl xs of
        EmptyL    -> CL x xs
        x' :< xs' -> CL x' (xs' |> x)
    backward (CL x xs) = Just $ case viewr xs of
        EmptyR    -> CL x xs
        xs' :> x' -> CL x' (x <| xs')

instance Comonad CyclicList where
    extract   (CL x _) = x
    duplicate (CL x xs) = CL (CL x xs) (go (singleton x) xs)
        where
            go old new = case viewl new of
                EmptyL -> empty
                x' :< xs' -> CL x' (xs' >< old) <| go (old |> x') xs'

我们可以重用simulate任何一种数据结构。有一个更有趣的CyclicList输出,因为它不是撞到墙上,而是回绕来与自己交互。

{-# LANGUAGE DeriveFunctor #-}

import Control.Comonad
import Data.Sequence hiding (take)
import Data.Bits
import Data.Word

main = do
    putStrLn "10 + 1 + 10 Zipper"
    simulate (rule 110) 10 10 30 $ Zipper (take 10 . repeat $ False) True (take 10 . repeat $ False)
    putStrLn "10 + 1 + 10 Cyclic"
    simulate (rule 110) 10 10 30 $ CL True (fromList (take 20 . repeat $ False))
于 2014-09-05T19:41:38.260 回答