11

我正在尝试使用scikit-learn. 我正在尝试 DBSCAN 和 MeanShift,并想确定哪些超参数(例如bandwidthMeanShift 和epsDBSCAN)最适合我正在使用的数据类型(新闻文章)。

我有一些由预先标记的集群组成的测试数据。我一直在尝试使用scikit-learn'sGridSearchCV但不明白在这种情况下如何(或是否可以)应用,因为它需要拆分测试数据,但我想对整个数据集运行评估并比较结果到预先标记的数据。

我一直在尝试指定一个评分函数,它将估计器的标签与真实标签进行比较,但它当然不起作用,因为只有数据样本被聚类,而不是全部。

这里有什么合适的方法?

4

2 回答 2

4

DBSCAN 的以下功能可能会有所帮助。我已经编写它来迭代超参数 eps 和 min_samples 并包含 min 和 max 集群的可选参数。由于 DBSCAN 是无监督的,因此我没有包含评估参数。

def dbscan_grid_search(X_data, lst, clst_count, eps_space = 0.5,
                       min_samples_space = 5, min_clust = 0, max_clust = 10):

    """
Performs a hyperparameter grid search for DBSCAN.

Parameters:
    * X_data            = data used to fit the DBSCAN instance
    * lst               = a list to store the results of the grid search
    * clst_count        = a list to store the number of non-whitespace clusters
    * eps_space         = the range values for the eps parameter
    * min_samples_space = the range values for the min_samples parameter
    * min_clust         = the minimum number of clusters required after each search iteration in order for a result to be appended to the lst
    * max_clust         = the maximum number of clusters required after each search iteration in order for a result to be appended to the lst


Example:

# Loading Libraries
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
import pandas as pd

# Loading iris dataset
iris = datasets.load_iris()
X = iris.data[:, :] 
y = iris.target

# Scaling X data
dbscan_scaler = StandardScaler()

dbscan_scaler.fit(X)

dbscan_X_scaled = dbscan_scaler.transform(X)

# Setting empty lists in global environment
dbscan_clusters = []
cluster_count   = []


# Inputting function parameters
dbscan_grid_search(X_data = dbscan_X_scaled,
                   lst = dbscan_clusters,
                   clst_count = cluster_count
                   eps_space = pd.np.arange(0.1, 5, 0.1),
                   min_samples_space = pd.np.arange(1, 50, 1),
                   min_clust = 3,
                   max_clust = 6)

"""

    # Importing counter to count the amount of data in each cluster
    from collections import Counter


    # Starting a tally of total iterations
    n_iterations = 0


    # Looping over each combination of hyperparameters
    for eps_val in eps_space:
        for samples_val in min_samples_space:

            dbscan_grid = DBSCAN(eps = eps_val,
                                 min_samples = samples_val)


            # fit_transform
            clusters = dbscan_grid.fit_predict(X = X_data)


            # Counting the amount of data in each cluster
            cluster_count = Counter(clusters)


            # Saving the number of clusters
            n_clusters = sum(abs(pd.np.unique(clusters))) - 1


            # Increasing the iteration tally with each run of the loop
            n_iterations += 1


            # Appending the lst each time n_clusters criteria is reached
            if n_clusters >= min_clust and n_clusters <= max_clust:

                dbscan_clusters.append([eps_val,
                                        samples_val,
                                        n_clusters])


                clst_count.append(cluster_count)

    # Printing grid search summary information
    print(f"""Search Complete. \nYour list is now of length {len(lst)}. """)
    print(f"""Hyperparameter combinations checked: {n_iterations}. \n""")
于 2019-02-11T21:05:29.083 回答
3

您是否考虑过自己实施搜索

实现 for 循环并不是特别难。即使您想优化两个参数,它仍然相当容易。

但是,对于 DBSCAN 和 MeanShift,我建议首先了解您的相似性度量。根据对度量的理解而不是参数优化来匹配某些标签(这有很高的过度拟合风险)来选择参数更有意义。

换句话说,两篇文章应该聚集在什么距离上?

如果这个距离从一个数据点到另一个数据点变化太大,这些算法将严重失败;并且您可能需要找到一个归一化的距离函数,以使实际的相似度值再次有意义。TF-IDF 是文本的标准,但主要是在检索上下文中。它们在集群环境中可能工作得更糟。

还要注意 MeanShift(类似于 k-means)需要重新计算坐标 - 在文本数据上,这可能会产生不希望的结果;更新后的坐标实际上变得更糟,而不是更好。

于 2014-09-03T11:05:16.063 回答