我想使用 JAGS 估计 13 个地点(9 个是鸟类,4 个是潜在栖息地)的冠层覆盖百分比的平均值和 sd。我正在使用 beta 分布来解释数据受 0 和 1 约束的事实。
我有适用于其他分布(泊松和对数正态)的模型语句的代码,我试图调整该代码,但我惨遭失败。
下面是 R 代码、模型语句和数据。我在 Windows Vista 中使用 R 3.1.1。如果您可以查看模型声明并将我理顺,我将非常感激。
谢谢,
杰夫
######## MODEL ##############
model{
for (i in 1:227) {
log(mean[i]) <- a[site[i]]
cover20p[i] ~ dbeta(1, 0.5)
}
for (i in 1:13){
a[i] ~ dnorm(0, tau)
median[i] <- exp(a[i])
}
sd ~ dunif(0, 10)
tau <- 1 / (sd*sd) # precision
}
######### R code ##########
frag <- read.csv("f:\\brazil\\TIandFRAG.csv", header=T)
library(R2jags)
library(rjags)
setwd("f://brazil")
site <- frag$site
cover20p <- frag$cover20p/100
N <- length(frag$site)
jags.data <- list("site", "cover20p")
jags.params <- c("median", "test100MF","test100MT","test100fc","test100fa",
"test100gv","test100hm","test100mc", "test100ca","test100ct", "test10MF",
"test10MT", "test10fc","test10fa", "test10gv", "test10hm", "test10mc", "test10ca", "test10ct",
"test1MF", "test1MT", "test1fc", "test1fa", "test1gv", "test1hm",
"test1mc", "test1ca", "test1ct", "t1est1_con","t2est10_con","t3est100_con",
"t4est1_100","t5est1_10","t6est10_100")
#inits1 <- list(a=0, sd=0)
#inits2 <- list(a=100, sd=50)
#jags.inits <- list(inits1, inits2)
jags.inits <- function() {
list(a=c(0,0,0,0,0,0,0,0,0,0,0,0,0), sd=1)}
jagsfit <- jags(data=jags.data, inits=jags.inits, jags.params,
n.iter=1000000, n.burnin=20000, model.file="fragmodelbeta.txt")
my.coda <- as.mcmc(jagsfit)
summary(my.coda, quantiles=c(0.05, 0.25,0.5,0.75, 0.95))
print(jagsfit, digits=3)
##### DATA ###################
structure(list(site = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L,
10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L
), canopy = c(0.95, 0.8, 0.85, 0.9, 0.35, 0.999, 0.999, 0.999,
0.95, 0.55, 0.9, 0.85, 0.7, 0.65, 0.05, 0.6, 0.999, 0.999, 0.85,
0.9, 1e-04, 0.45, 0.999, 0.7, 0.95, 0.5, 0.95, 0.6, 0.65, 0.7,
0.4, 0.85, 0.6, 0.95, 0.75, 0.9, 0.85, 0.75, 0.7, 0.85, 0.3,
0.7, 0.8, 0.7, 0.75, 0.8, 0.75, 0.95, 0.9, 0.05, 0.85, 0.6, 0.65,
0.5, 0.85, 0.95, 0.85, 0.25, 0.75, 0.999, 0.65, 0.95, 0.8, 0.9,
0.6, 0.8, 0.999, 0.2, 0.8, 0.4, 0.999, 0.95, 0.4, 0.999, 0.999,
0.95, 0.45, 0.2, 0.7, 0.95, 0.7, 0.8, 0.5, 0.85, 0.55, 1e-04,
0.25, 0.45, 0.999, 0.95, 0.999, 0.9, 0.6, 0.35, 0.95, 0.3, 0.999,
0.999, 0.5, 0.4, 0.9, 0.999, 0.7, 0.999, 0.9, 0.999, 0.4, 0.55,
0.8, 0.7, 0.999, 1e-04, 0.8, 1e-04, 0.7, 0.5, 0.8, 0.75, 1e-04,
0.45, 0.1, 1e-04, 0.4, 0.55, 0.4, 0.999, 0.9, 0.9, 0.15, 0.55,
0.35, 0.9, 0.65, 0.25, 0.999, 0.85, 0.999, 0.95, 0.7, 0.5, 0.7,
0.2, 0.95, 0.999, 0.999, 0.25, 0.85, 0.5, 0.8, 0.75, 0.85, 0.7,
0.95, 0.05, 0.65, 0.65, 0.999, 0.999, 0.999, 0.65, 0.4, 0.6,
0.9, 0.85, 0.75, 0.5, 0.65, 0.999, 0.65, 0.55, 0.75, 0.4, 0.9,
0.35, 0.999, 0.999, 0.4, 0.5, 0.8, 0.95, 0.95, 0.55, 0.7, 0.85,
0.8, 0.8, 0.65, 0.999, 0.6, 0.5, 0.999, 0.8, 0.999, 0.45, 0.999,
0.999, 0.8, 0.85, 0.999, 0.999, 0.999, 0.999, 0.5, 0.6, 0.15,
0.75, 0.6, 0.1, 0.05, 1e-04, 0.999, 0.6, 0.1, 0.35, 0.9, 0.9,
0.95, 0.95, 0.9, 0.55, 0.65, 0.9, 0.4, 0.999, 0.65, 0.5, 0.8)), .Names = c("site",
"canopy"), class = "data.frame", row.names = c(NA, -227L))