The glmnet
package uses a range of LASSO
tuning parameters lambda
scaled from the maximal lambda_max
under which no predictors are selected. I want to find out how glmnet
computes this lambda_max
value. For example, in a trivial dataset:
set.seed(1)
library("glmnet")
x <- matrix(rnorm(100*20),100,20)
y <- rnorm(100)
fitGLM <- glmnet(x,y)
max(fitGLM$lambda)
# 0.1975946
The package vignette (http://www.jstatsoft.org/v33/i01/paper) describes in section 2.5 that it computes this value as follows:
sx <- as.matrix(scale(x))
sy <- as.vector(scale(y))
max(abs(colSums(sx*sy)))/100
# 0.1865232
Which clearly is close but not the same value. So, what causes this difference? And in a related question, how could I compute lambda_max
for a logistic regression?