我有一个看起来像这样的数据框,我正在尝试计算行 VALUE 的累积总和。输入文件也可以在这里找到:https ://dl.dropboxusercontent.com/u/16277659/input.csv
df <-read.csv("input.csv", sep=";", header=TRUE)
NAME; ID; SURVEY_YEAR REFERENCE_YEAR; VALUE
SAMPLE1; 253; 1880; 1879; 14
SAMPLE1; 253; 1881; 1880; -10
SAMPLE1; 253; 1882; 1881; 4
SAMPLE1; 253; 1883; 1882; 10
SAMPLE1; 253; 1884; 1883; 10
SAMPLE1; 253; 1885; 1884; 12
SAMPLE1; 253; 1889; 1888; 11
SAMPLE1; 253; 1890; 1889; 12
SAMPLE1; 253; 1911; 1910; -16
SAMPLE1; 253; 1913; 1911; -11
SAMPLE1; 253; 1914; 1913; -8
SAMPLE2; 261; 1992; 1991; -19
SAMPLE2; 261; 1994; 1992; -58
SAMPLE2; 261; 1995; 1994; -40
SAMPLE2; 261; 1996; 1995; -21
SAMPLE2; 261; 1997; 1996; -50
SAMPLE2; 261; 1998; 1997; -60
SAMPLE2; 261; 2005; 2004; -34
SAMPLE2; 261; 2006; 2005; -23
SAMPLE2; 261; 2007; 2006; -19
SAMPLE2; 261; 2008; 2007; -29
SAMPLE2; 261; 2009; 2008; -89
SAMPLE2; 261; 2013; 2009; -14
SAMPLE2; 261; 2014; 2013; -16
我的最终目标是绘制每个 SAMPLE 的图,其中在 x 轴上绘制 SURVEY_YEAR,在 y 轴上绘制后来计算的 VALUE 的累积总和 CUMSUM。到目前为止,我的代码整理数据:
# Filter out all values with less than 3 measurements by group (in this case does nothing, but is important with the rest of my data)
df <-read.csv("input.csv", sep=";", header=TRUE)
rowsn <- with(df,by(VALUE,ID,function(xx)sum(!is.na(xx))))
names(which(rowsn>=3))
dat <- df[df$ID %in% names(which(rowsn>=3)),]
# write new column which defines the beginning of the group (split by ID) and for the cumsum function(=0)
dat <- do.call(rbind, lapply(split(dat, dat$ID), function(x){
x <- rbind(x[1,],x); x[1, "VALUE"] <- 0; x[1, "SURVEY_YEAR"] <- x[1, "SURVEY_YEAR"] -1; return(x)}))
rownames(dat) <- seq_len(nrow(dat))
# write dat to csv file for inspection
write.table(dat, "dat.csv", sep=";", row.names=FALSE)
这将产生以下数据框,它是计算行 VALUE 的累积总和的起点。
NAME; ID; SURVEY_YEAR; REFERENCE_YEAR; VALUE
SAMPLE1; 253; 1879; 1879; 0
SAMPLE1; 253; 1880; 1879; 14
SAMPLE1; 253; 1881; 1880; -10
SAMPLE1; 253; 1882; 1881; 4
SAMPLE1; 253; 1883; 1882; 10
SAMPLE1; 253; 1884; 1883; 10
SAMPLE1; 253; 1885; 1884; 12
SAMPLE1; 253; 1889; 1888; 11
SAMPLE1; 253; 1890; 1889; 12
SAMPLE1; 253; 1911; 1910; -16
SAMPLE1; 253; 1913; 1911; -11
SAMPLE1; 253; 1914; 1913; -8
SAMPLE2; 261; 1991; 1991; 0
SAMPLE2; 261; 1992; 1991; -19
SAMPLE2; 261; 1994; 1992; -58
SAMPLE2; 261; 1995; 1994; -40
SAMPLE2; 261; 1996; 1995; -21
SAMPLE2; 261; 1997; 1996; -50
SAMPLE2; 261; 1998; 1997; -60
SAMPLE2; 261; 2005; 2004; -34
SAMPLE2; 261; 2006; 2005; -23
SAMPLE2; 261; 2007; 2006; -19
SAMPLE2; 261; 2008; 2007; -29
SAMPLE2; 261; 2009; 2008; -89
SAMPLE2; 261; 2013; 2009; -14
SAMPLE2; 261; 2014; 2013; -16
现在的问题是我想计算每年行 VALUE 的累积总和。如您所见,我在某些年份之间存在差距(例如,在 1890 年至 1911 年之间的 SAMPLE1 和 1998 年至 2005 年之间的 SAMPLE2 中),我想用 NA 值填补每年之间的差距,以便我可以使用绘图类型进行绘图='b'(点和线),因此不同的间隙不连接。重要的是,如果彼此之后有多个 NA 值,则在 CUMSUM 行中,最后一个 NA 值应替换为之前的最后一个数值。
正常情况是 REFERENCE_YEAR 和 SURVEY_YEAR 之间的差等于 1(例如,对于 SAMPLE1 从 1880 年到 1881 年的第一个示例),但在某些情况下,REFERENCE_YEAR 和 SURVEY_YEAR 之间存在不同的周期(例如,在 SAMPLE1 从 1911 年到1913 年和 2009 年至 2013 年的 SAMPLE2)。如果是这种情况,则累积和的函数应该只应用一次,并且值应该在指定的时期内保持不变(在图中,这会导致一条连接的直线)。
很难详细解释所有内容,如果我提供一个结果应该是什么样子的示例,可能会更容易:
NAME; ID; SURVEY_YEAR; REFERENCE_YEAR; VALUE; CUMSUM
SAMPLE1; 253; 1879; 1879; 0; 0
SAMPLE1; 253; 1880; 1879; 14; 14
SAMPLE1; 253; 1881; 1880; -10; 4
SAMPLE1; 253; 1882; 1881; 4; 8
SAMPLE1; 253; 1883; 1882; 10; 18
SAMPLE1; 253; 1884; 1883; 10; 28
SAMPLE1; 253; 1885; 1884; 12; 40
SAMPLE1; 253; 1886; 1885; NA; NA
SAMPLE1; 253; 1887; 1886; NA; NA
SAMPLE1; 253; 1888; 1887; NA; 40
SAMPLE1; 253; 1889; 1888; 11; 51
SAMPLE1; 253; 1890; 1889; 12; 63
SAMPLE1; 253; 1891; 1890; NA; NA
SAMPLE1; 253; 1892; 1891; NA; NA
SAMPLE1; 253; 1893; 1892; NA; NA
SAMPLE1; 253; 1894; 1893; NA; NA
SAMPLE1; 253; 1895; 1894; NA; NA
SAMPLE1; 253; 1896; 1895; NA; NA
SAMPLE1; 253; 1897; 1896; NA; NA
SAMPLE1; 253; 1898; 1897; NA; NA
SAMPLE1; 253; 1899; 1898; NA; NA
SAMPLE1; 253; 1900; 1899; NA; NA
SAMPLE1; 253; 1901; 1900; NA; NA
SAMPLE1; 253; 1902; 1901; NA; NA
SAMPLE1; 253; 1903; 1902; NA; NA
SAMPLE1; 253; 1904; 1903; NA; NA
SAMPLE1; 253; 1905; 1904; NA; NA
SAMPLE1; 253; 1906; 1905; NA; NA
SAMPLE1; 253; 1907; 1906; NA; NA
SAMPLE1; 253; 1908; 1907; NA; NA
SAMPLE1; 253; 1909; 1908; NA; NA
SAMPLE1; 253; 1910; 1909; NA; 63
SAMPLE1; 253; 1911; 1910; -16; 47
SAMPLE1; 253; 1912; 1911; -11; 36
SAMPLE1; 253; 1913; 1912; -11; 36
SAMPLE1; 253; 1914; 1913; -8; 28
SAMPLE2; 253; 1991; 1991; 0; 0
SAMPLE2; 253; 1992; 1991; -19; -19
SAMPLE2; 253; 1993; 1992; -58; -77
SAMPLE2; 253; 1994; 1993; -58; -135
SAMPLE2; 253; 1995; 1994; -40; -175
SAMPLE2; 253; 1996; 1995; -21; -196
SAMPLE2; 253; 1997; 1996; -50; -246
SAMPLE2; 253; 1998; 1997; -60; -306
SAMPLE2; 253; 1999; 1998; NA; NA
SAMPLE2; 253; 2000; 1999; NA; NA
SAMPLE2; 253; 2001; 2000; NA; NA
SAMPLE2; 253; 2002; 2001; NA; NA
SAMPLE2; 253; 2003; 2002; NA; NA
SAMPLE2; 253; 2004; 2003; NA; -306
SAMPLE2; 253; 2005; 2004; -34; -340
SAMPLE2; 253; 2006; 2005; -23; -363
SAMPLE2; 253; 2007; 2006; -19; -382
SAMPLE2; 253; 2008; 2007; -29; -411
SAMPLE2; 253; 2009; 2008; -89; -500
SAMPLE2; 253; 2010; 2009; -14; -514
SAMPLE2; 253; 2011; 2010; -14; -514
SAMPLE2; 253; 2012; 2011; -14; -514
SAMPLE2; 253; 2013; 2012; -14; -514
SAMPLE2; 253; 2014; 2013; -16; -530
非常感谢您对这个相当复杂的案例的帮助!谢谢!