3

我有一个通过 pandas store.append 存储的大型数据集(400 万行,50 列)。当我使用 store.select 或 read_hdf 查询大于某个值的 2 列时(即“(a > 10) & (b > 1)”,我得到大约 15,000 行返回。

当我阅读整个表格时,例如 df,并执行 df[(df.a > 10) & (df.b > 1)] 我得到 30,000 行。我缩小了问题的范围——当我读入整个表格并执行 df.query("(a > 10) & (b > 1)") 时,它是相同的 15,000 行,但是当我将引擎设置为 python 时—— > df.query("(a > 10) & (b > 1)", engine = 'python') 我得到了 30,000 行。

我怀疑这与在 HDF 和 Query 方法中查询的 eval/numexpr 方法有关。

类型是 a 和 b 列中的 float64,即使我使用浮点数(即 1. 而不是 1)进行查询,问题仍然存在。

我将不胜感激任何反馈,或者如果其他人有同样的问题,我们需要解决这个问题。

问候, 尼尔

=========================

这是信息:

pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 2.7.6.final.0
python-bits: 32
OS: Darwin
OS-release: 13.3.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None

pandas: 0.14.1
nose: 1.3.3
Cython: None
numpy: 1.8.0
scipy: 0.14.0
statsmodels: 0.5.0
IPython: 1.2.1
sphinx: 1.2.2
patsy: 0.2.0
scikits.timeseries: 0.91.3
dateutil: 2.2
pytz: 2013.8
bottleneck: 0.7.0
tables: 3.1.1
numexpr: 2.4
matplotlib: 1.3.1
openpyxl: 2.0.3
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.5.5
lxml: 3.3.5
bs4: None
html5lib: 0.95-dev
httplib2: None
apiclient: None
rpy2: None
sqlalchemy: 0.9.4
pymysql: None
psycopg2: None

df.info() ---> 在选定的 15,000 行左右

Int64Index: 15533 entries, 67302 to 142465

Data columns (total 47 columns):

date 15533 non-null datetime64[ns]
text 15533 non-null object
date2 1090 non-null datetime64[ns]
x1 15533 non-null float64
x2 15533 non-null float64
x3 15533 non-null float64
x4 15533 non-null float64
x5 15533 non-null float64
x6 15533 non-null float64
x7 15533 non-null float64
x8 15533 non-null float64
x9 15533 non-null float64
x10 15533 non-null float64
x11 15533 non-null float64
x12 15533 non-null float64
x13 15533 non-null float64
x14 15533 non-null float64
x15 15533 non-null float64
x16 15533 non-null float64
x17 15533 non-null float64
x18 15533 non-null float64
a 15533 non-null float64
x19 15533 non-null float64
x20 15533 non-null float64
x21 15533 non-null float64
x22 15533 non-null float64
x23 15533 non-null float64
x24 15533 non-null float64
b 15533 non-null float64
x25 15533 non-null float64
x26 15533 non-null float64
x27 15533 non-null float64
x28 15533 non-null float64
x29 15533 non-null float64
x30 15533 non-null float64
x31 15497 non-null float64
x32 15497 non-null float64
x33 15497 non-null float64
x34 15497 non-null float64
x35 15533 non-null int64
x36 15533 non-null int64
x37 15533 non-null int64
x38 15533 non-null int64
x39 15533 non-null int64
x40 15533 non-null int64
x41 15533 non-null int64
x42 15533 non-null int64
dtypes: datetime64ns, float64(36), int64(8), object(1)

ptdump -av 文件

/ (RootGroup) ''
/._v_attrs (AttributeSet), 4 attributes:
[CLASS := 'GROUP',
PYTABLES_FORMAT_VERSION := '2.1',
TITLE := '',
VERSION := '1.0']
/MKT (Group) ''
/MKT._v_attrs (AttributeSet), 14 attributes:
[CLASS := 'GROUP',
TITLE := '',
VERSION := '1.0',
data_columns := ['date', 'text', 'a', 'x20', 'x23', 'x24', 'b', 'x25', 'x26', 'x35', 'x36', 'x37', 'x38', 'x39', 'x40', 'x41', 'x42'],
encoding := None,
index_cols := [(0, 'index')],
info := {1: {'type': 'Index', 'names': [None]}, 'index': {}},
levels := 1,
nan_rep := 'nan',
non_index_axes := [(1, ['date', 'text', 'date2', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13', 'x14', 'x15', 'x16', 'x17', 'x18', 'a', 'x19', 'x20', 'x21', 'x22', 'x23', 'x24', 'b', 'x25', 'x26', 'x27', 'x28', 'x29', 'x30', 'x31', 'x32', 'x33', 'x34', 'x35', 'x36', 'x37', 'x38', 'x39', 'x40', 'x41', 'x42'])],
pandas_type := 'frame_table',
pandas_version := '0.10.1',
table_type := 'appendable_frame',
values_cols := ['values_block_0', 'values_block_1', 'date', 'text', 'a', 'x20', 'x23', 'x24', 'b', 'x25', 'x26', 'x35', 'x36', 'x37', 'x38', 'x39', 'x40', 'x41', 'x42']]
/MKT/table (Table(3637597,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Int64Col(shape=(1,), dflt=0, pos=1),
"values_block_1": Float64Col(shape=(29,), dflt=0.0, pos=2),
"date": Int64Col(shape=(), dflt=0, pos=3),
"text": StringCol(itemsize=30, shape=(), dflt='', pos=4),
"a": Float64Col(shape=(), dflt=0.0, pos=5),
"x20": Float64Col(shape=(), dflt=0.0, pos=6),
"x23": Float64Col(shape=(), dflt=0.0, pos=7),
"x24": Float64Col(shape=(), dflt=0.0, pos=8),
"b": Float64Col(shape=(), dflt=0.0, pos=9),
"x25": Float64Col(shape=(), dflt=0.0, pos=10),
"x26": Float64Col(shape=(), dflt=0.0, pos=11),
"x35": Int64Col(shape=(), dflt=0, pos=12),
"x36": Int64Col(shape=(), dflt=0, pos=13),
"x37": Int64Col(shape=(), dflt=0, pos=14),
"x38": Int64Col(shape=(), dflt=0, pos=15),
"x39": Int64Col(shape=(), dflt=0, pos=16),
"x40": Int64Col(shape=(), dflt=0, pos=17),
"x41": Int64Col(shape=(), dflt=0, pos=18),
"x42": Int64Col(shape=(), dflt=0, pos=19)}
byteorder := 'little'
chunkshape := (322,)
autoindex := True
colindexes := {
"x41": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x20": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x37": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x42": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x26": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x38": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x40": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"date": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x36": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"text": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x23": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x39": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x25": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x24": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"a": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"x35": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"b": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/MKT/table._v_attrs (AttributeSet), 83 attributes:
[CLASS := 'TABLE',
x23_dtype := 'float64',
x23_kind := ['x23'],
x20_dtype := 'float64',
x20_kind := ['x20'],
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_10_FILL := 0.0,
FIELD_10_NAME := 'x25',
FIELD_11_FILL := 0.0,
FIELD_11_NAME := 'x26',
FIELD_12_FILL := 0,
FIELD_12_NAME := 'x35',
FIELD_13_FILL := 0,
FIELD_13_NAME := 'x36',
FIELD_14_FILL := 0,
FIELD_14_NAME := 'x37',
FIELD_15_FILL := 0,
FIELD_15_NAME := 'x38',
FIELD_16_FILL := 0,
FIELD_16_NAME := 'x39',
FIELD_17_FILL := 0,
FIELD_17_NAME := 'x40',
FIELD_18_FILL := 0,
FIELD_18_NAME := 'x41',
FIELD_19_FILL := 0,
FIELD_19_NAME := 'x42',
FIELD_1_FILL := 0,
FIELD_1_NAME := 'values_block_0',
FIELD_2_FILL := 0.0,
FIELD_2_NAME := 'values_block_1',
FIELD_3_FILL := 0,
FIELD_3_NAME := 'date',
FIELD_4_FILL := '',
FIELD_4_NAME := 'text',
FIELD_5_FILL := 0.0,
FIELD_5_NAME := 'a',
FIELD_6_FILL := 0.0,
FIELD_6_NAME := 'x20',
FIELD_7_FILL := 0.0,
FIELD_7_NAME := 'x23',
FIELD_8_FILL := 0.0,
FIELD_8_NAME := 'x24',
FIELD_9_FILL := 0.0,
FIELD_9_NAME := 'b',
a_dtype := 'float64',
a_kind := ['a'],
NROWS := 3637597,
TITLE := '',
VERSION := '2.7',
x24_dtype := 'float64',
x24_kind := ['x24'],
b_dtype := 'float64',
b_kind := ['b'],
x25_dtype := 'float64',
x25_kind := ['x25'],
x26_dtype := 'float64',
x26_kind := ['x26'],
date_dtype := 'datetime64',
date_kind := ['date'],
x39_dtype := 'int64',
x39_kind := ['x39'],
x37_dtype := 'int64',
x37_kind := ['x37'],
x41_dtype := 'int64',
x41_kind := ['x41'],
x35_dtype := 'int64',
x35_kind := ['x35'],
x40_dtype := 'int64',
x40_kind := ['x40'],
x38_dtype := 'int64',
x38_kind := ['x38'],
x42_dtype := 'int64',
x42_kind := ['x42'],
x36_dtype := 'int64',
x36_kind := ['x36'],
index_kind := 'integer',
text_dtype := 'string240',
text_kind := ['text'],
values_block_0_dtype := 'datetime64',
values_block_0_kind := ['date2'],
values_block_1_dtype := 'float64',
values_block_1_kind := ['x22', 'x18', 'x21', 'x16', 'x19', 'x17', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x29', 'x30', 'x28', 'x2', 'x1', 'x3', 'x10', 'x27', 'x11', 'x12', 'x13', 'x14', 'x15', 'x33', 'x32', 'x34', 'x31']]

这是我在表格中的阅读方式:

df = DataFrame()store = pd.HDFStore('/Users/neil/MKT.h5')
df = store.select('MKT', "(a > 10) & (b > 1)")
store.close()

这是我编写/填写表格的方式:

store = pd.HDFStore('/Users/neil/MKT.h5')

listofsearchablevars = ['date', 'text', 'a', 'x20', 'x23', 'x24', 'b', 'x25', 'x26', 'x35', 'x36', 'x37', 'x38', 'x39', 'x40', 'x41', 'x42']

df = .....

store.append('MKT', df, data_columns = listofsearchablevars, nan_rep = 'nan', chunksize=500000, min_itemsize = {'values': 30})

store.close()

编辑:响应提供一些示例数据的请求....

数据

为清楚起见,我们称结果为 15,000:“错误”让我们称结果为 30,000:“正确”让我们称项目为正确但不正确:“仅正确”

我已经确认,不正确中的所有行/项目都完全在正确中找到。

这里有几行数据(每行只取了 10000 和 10001 行):

仅正确:

                    9869                 9870
date   2001-08-10 00:00:00  2001-08-17 00:00:00
text                   DCR                  DCR
date2                  NaN                  NaN
x19                    1.9               1.8396
x18                   1.98                  1.9
x20                    1.8                  1.8
x9                    2.54                 2.54
x10                   5.25                5.125
x11                  9.625                9.625
x12                   1.61                  1.7
x13                   1.05                 1.05
x14                   1.05                 1.05
x21                  75700                64800
x23               140992.7             116948.9
x24           0.0008284454         0.0007097211
x25            0.002580505          0.002630241
x26            0.001540047          0.001440302
x27            0.001850877          0.001832468
x5                  17.915               17.915
x8                  17.915               17.915
x2                 34.0379              32.9563
a                  34.0385             32.95643
x6               -42.80079            -42.80079
x7               -8.762288            -9.844354
x4                       0                    0
x1           -0.0003349149        -0.0003349149
x3           -0.0003349149        -0.0003349149
x28              1.579e+07            1.579e+07
b                 1.261029             1.302433
x29               1.284075             1.326236
x30               1.488814             1.537697
x22             -0.2891579           -0.3205045
x17                   0.31                 0.31
x15                   0.84                 0.84
x16                 2.5937               2.5937
x34                  6.895                7.105
x32               -1.29055             -1.35055
x31                  -0.77                -0.63
x33                 -0.665                -0.49
x38                      1                    1
x42                      0                    0
x36                      0                    0
x40                      0                    0
x35                      0                    0
x39                      0                    0
x37                      0                    0
x41                      0                    0

不正确:

                    153641               153642
date   2008-08-22 00:00:00  2008-08-29 00:00:00
text                   PRL                  PRL
date2                  NaN                  NaN
x19                    1.9                 1.88
x18                   1.95                 1.94
x20                   1.85                 1.87
x9                    2.07                 2.07
x10                   2.23                 2.23
x11                   2.94                 2.94
x12                   1.75                 1.75
x13                   1.71                 1.71
x14                   1.69                 1.69
x21                 133549                73525
x23               254119.1             140764.5
x24            0.001485416         0.0008315729
x25            0.001227271          0.001204803
x26            0.001006876          0.001048327
x27           0.0009764919         0.0009638125
x5                  18.008               18.008
x8                  18.058               18.058
x2                 34.2152               33.855
a                  34.3102             33.94904
x6               -35.07229            -35.07229
x7              -0.7620911            -1.123251
x4                       0                    0
x1               0.0111308            0.0111308
x3               0.0111308            0.0111308
x28             1.5488e+08           1.5488e+08
b                 1.251983             1.265302
x29               1.272828             1.286369
x30               1.247996             1.261273
x22              0.1368421            0.1489362
x17                   0.16                 0.16
x15                    0.2                  0.2
x16                   0.47                 0.47
x34                   2.25                 2.34
x32                  1.395                1.365
x31                   1.25                 1.31
x33                  1.175                 1.25
x38                      1                    1
x42                      0                    0
x36                      0                    0
x40                      0                    0
x35                      0                    0
x39                      0                    0
x37                      0                    0
x41                      0                    0

正确的:

                    99723                99725
date   2009-11-27 00:00:00  2009-12-11 00:00:00
text                   ACL                  ACL
date2                  NaN                  NaN
x19                   1.17                  1.2
x18                   1.22                 1.39
x20                   1.11                 1.14
x9                    1.76                 1.76
x10                   1.76                 1.76
x11                   1.76                 1.76
x12                   0.63                 0.74
x13                   0.36                 0.36
x14                   0.17                 0.17
x21                 285474               709374
x23               333678.1             868999.7
x24           0.0005489386          0.001393863
x25            0.002350057          0.002279827
x26            0.002160912          0.002111369
x27            0.002428953          0.002244943
x5                 103.908              103.908
x8                 103.908              103.908
x2                121.5721             124.6894
a                 121.5724             124.6896
x6                92.16074             92.16074
x7                213.7331             216.8503
x4                       0                    0
x1            -0.008266928         -0.008266928
x3            -0.008266928         -0.008266928
x28             0.02743141           0.02703708
b                 1.037747             1.011804
x29               1.421532             1.385994
x30                1.52714             1.488961
x22               1.213675                  1.7
x17                   0.47                 0.47
x15                   0.48                 0.48
x16                   0.48                 0.48
x34                   0.32                 0.32
x32                   1.04                 1.04
x31                   -0.6                 -0.6
x33                -0.5901               -0.479
x38                      0                    0
x42                      0                    0
x36                      0                    0
x40                      0                    0
x35                      0                    0
x39                      0                    0
x37                      0                    0
x41                      0                    0
4

1 回答 1

0

成功!!!!我填充了数据中的所有 NaN,现在 read_hdf 返回了正确的 30,000 行。a 列具有 NaN(这是查询中的 data_columns 之一,a > 10)。男人,那是痛苦的。仅供参考 - 由于我的偏执狂,为了摆脱任何可能的情况,这可能会在未来重演,我完全填充(0)整个表,因为我不能冒险从这个分析中得出结论,从表中查询不正确或不完整. 这肯定是一个 NaN 问题。

于 2014-08-01T22:09:49.863 回答