8

我使用自己的 A* 实现穿越了一个 16x16 的迷宫。

一切都很好。然而,在遍历之后,我想知道哪面墙会给我最好的替代路径。除了在迷宫中移除每个块并重新运行 A*,还有什么更聪明和优雅的解决方案?

我在想给每个墙节点(被 A* 忽略)一个暂定的 F 值,并将节点结构更改为也有一个 n 大小的列表,node *tentative_parent其中 n 是迷宫中的墙数。这可能可行吗?

4

2 回答 2

3

当您将一个节点添加到要考虑的节点列表中时,还要添加一个标志,表明通过该节点的路径是否已经穿过墙壁。

possibleNode.heuristic = currentNode.distance + heuristicEstimate(possibleNode)
possibleNode.goneThroughWall = currentNode.goneThroughWall || possibleNode.isAWall
allPossiblePaths.insert(possibleNode) // Priority queue sorted on Node.heuristic

然后在考虑来自节点的可能路径时,如果它没有穿过墙壁,则将相邻的墙壁视为公平路径。

foreach neighborNode in neighbors(someNode)
    if !(someNode.goneThroughWall && neighborNode.isAWall)
        addToPossiblePaths(neighborNode)

您已经必须保持从开始节点到正在处理的当前节点的距离,并且它使用您已经拥有的东西。

完整的概念证明:

我们看到它operator==被定义为还考虑路径是否已经撞墙。这允许我们在需要时考虑该节点两次,当我们查看封闭集以查看我们是否已经遇到该节点时。在以下来源的示例迷宫中的中央走廊就是这种情况。

标有 的代码部分#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL显示了增强普通 A* 算法以使其能够穿过单面墙所需的部分。

#include <cassert>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <set>
#include <vector>

#define I_AM_ALLOWED_TO_GO_THROUGH_A_WALL

const int width  = 5;
const int height = 5;

// Define maze
const int maze[height][width] =
  { { 0, 1, 1, 0, 0 },
    { 0, 1, 0, 1, 0 },
    { 0, 1, 0, 1, 0 },
    { 0, 1, 0, 1, 0 },
    { 0, 0, 0, 0, 0 } };

// Square represents the actual structure of the maze
// Here, we only care about where it is, and whether it is a wall
struct Square {
  Square(int _x, int _y)
    : x(_x), y(_y) {}

  bool operator==(const Square& rhs) const {
    return x == rhs.x && y == rhs.y;
  }

  bool isAWall() const {
    return maze[y][x];
  }

  int distance(const Square& goal) const {
    return std::abs(x - goal.x) + std::abs(y - goal.y);
  }

  int x;
  int y;
};

// Define start and end of maze
const Square goalSquare(3, 0);
const Square startSquare(0, 0);

// A PathNode describes the A* algorithm's path through the maze
// It keeps track of its associated Square
//                   its previous PathNode in the path
//                   the length of the path up to the current PathNode
//                   whether the path so far has goneThroughWall
struct PathNode {
  explicit PathNode(const Square& s, int length = 0, const PathNode* _prev = NULL)
    : square(s),
      prev(_prev),
      pathLength(length) {
    heuristic = pathLength + square.distance(goalSquare);

#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
    if(prev)
      goneThroughWall = prev->goneThroughWall || square.isAWall();
    else
      goneThroughWall = false;

    // Sanity check, these should be the same
    assert(goneThroughWall == hasGoneThroughAWall());
#endif
  }

  bool operator<(const PathNode& rhs) const {
    return heuristic < rhs.heuristic;
  }

  // This is very important. When examining the closed set to see
  // if we've already evaulated this node, we want to differentiate
  // from whether we got to that node using a path through a wall.
  //
  // This is especially important in the given example maze.
  // Without this differentiation, paths going up column 3 will hit
  // old, closed paths going through the walls in column 2, and not
  // find the best path.
  bool operator==(const PathNode& rhs) const {
    return square == rhs.square
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
      && goneThroughWall == rhs.goneThroughWall
#endif
      ;
  }

  bool weakEquals(const PathNode& rhs) const {
    return square == rhs.square;
  }

  bool weakEquals(const Square& rhs) const {
    return square == rhs;
  }

  // Sanity checker
  bool hasGoneThroughAWall() const {
    if(square.isAWall()) return true;

    const PathNode* p = prev;
    while(p) {
      if(p->square.isAWall())
        return true;
      p = p->prev;
    }

    return false;
  }

  Square square;
  const PathNode* prev;
  int heuristic, pathLength;
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
  bool goneThroughWall;
#endif
};

std::ostream& operator<<(std::ostream& ostr, const PathNode& p) {
  ostr << "(" << p.square.x << ", " << p.square.y << ")";
  if(p.square.isAWall())
    ostr << " <- Wall!";
  return ostr;
}

std::vector<Square> getNeighbors(const Square& s) {
  std::vector<Square> neighbors;

  if(s.x > 0)
    neighbors.push_back(Square(s.x - 1, s.y));
  if(s.x < width - 1)
    neighbors.push_back(Square(s.x + 1, s.y));
  if(s.y > 0)
    neighbors.push_back(Square(s.x, s.y - 1));
  if(s.y < height - 1)
    neighbors.push_back(Square(s.x, s.y + 1));

  return neighbors;
}

void printList(const PathNode* p, int i = 0) {
  if(p) {
    printList(p->prev, i + 1);
    std::cout << *p << std::endl;
  } else {
    std::cout << "Length: " << i << std::endl;
  }
}

typedef std::multiset<PathNode> Set;

int main(int argc, char** argv) {
  // Print out maze
  for(int j = 0; j < height; ++j) {
    for(int i = 0; i < width; ++i) {
      std::cout << " " << maze[j][i];
    }
    std::cout << std::endl;
  }
  std::cout << std::endl;

  Set closedSet;
  Set openSet;
  openSet.insert(PathNode(startSquare)); // Start node (defined at line ~42)

  int processedCount = 0;
  while(!openSet.empty()) {
    Set::iterator currentNode = openSet.begin();
    ++processedCount;

    // We've found the goal, so print solution.
    if(currentNode->weakEquals(goalSquare)) {
      std::cout << "Processed nodes: " << processedCount << std::endl;
      printList(&*currentNode);
      return 0;
    }

    {
      // Move from open set to closed set
      Set::iterator del = currentNode;
      currentNode = closedSet.insert(*currentNode);
      openSet.erase(del);
    }

    std::vector<Square> neighbors = getNeighbors(currentNode->square);
    for(unsigned int i = 0; i < neighbors.size(); ++i) {
      PathNode currentNeighbor(neighbors[i], currentNode->pathLength + 1, &*currentNode);

      // Skip if it is 2nd wall
      if(
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
        currentNode->goneThroughWall &&
#endif
        currentNeighbor.square.isAWall()
      )
        continue;

      // Skip if it is already in the closed set
      // Note: Using std::find here instead of std::multiset::find because
      // std::multiset::find uses the definition !(a < b) && !(b < a) for
      // searching. I want it to use my overloaded a == b.
      if(find(closedSet.begin(), closedSet.end(), currentNeighbor) != closedSet.end())
        continue;

      // Skip if we were just there
      const PathNode* p = currentNode->prev;
      if(p && p->weakEquals(currentNeighbor))
        continue;

      // See if there is a better alternative in the open set
      // Note: Using std::find here instead of std::multiset::find. See above.
      Set::iterator contender = find(openSet.begin(), openSet.end(), currentNeighbor);
      if(contender == openSet.end())
        openSet.insert(currentNeighbor);
      else if(currentNeighbor.pathLength < contender->pathLength) {
        // We've found a better alternative, so replace
        openSet.erase(contender);
        openSet.insert(currentNeighbor);
      }
    }
  }

  std::cout << "Failure." << std::endl;
  return 1;
}
于 2010-03-22T07:07:36.550 回答
1

寻找拆除墙壁的候选区域:

沿着您找到的原始 A* 路径,保留之前的距离,并且只要之前的距离大于当前距离,请注意之前的节点可能会移除墙壁。

我认为它将捕获影响最大的案例:

示例 1:

    012
   *****
 0 *R*G*
 1 * * *
 2 * * *
 3 * * *
 4 * * *
 5 * * *
 6 * *
   *****

在哪里:

R (0,0) 是你看起来像兔子的路线跑步者 G (2,0) 是目标

在这种情况下,我们从 (0,0) 开始,距离为 2。下一个可用的移动是 (0,1),距离为 2.23(5 的平方根)。您的距离刚刚增加,因此您之前的位置有可能被拆除。

示例 2:

    0123456
   *********
 0 *R* *
 1 ** * *
 2 * * * *
 3 * * * *
 4 * * * *
 5 * * **
 6 * *G*
   *********

开始:(0,0) 结束:(6,6) A* 课程:(0,0), (1,1), (2,2), (3,3), (4,4), (5 ,5), (6,6) 距离:8.5、7.1、5.7、4.2、2.8、1.4(或 72、50、32、18、8、2 的平方根)没有最佳的墙可移除。

确定要拆除的墙:

在标记的节点和目标节点之间画一条线。沿该线的第一面墙(最靠近标记的节点)下降。给它一些绒毛,以允许沿着只会碰到角落的直线对角线移除墙壁。比较您的替代路径以找到最短的路径。

于 2010-03-22T02:58:09.653 回答