我使用自己的 A* 实现穿越了一个 16x16 的迷宫。
一切都很好。然而,在遍历之后,我想知道哪面墙会给我最好的替代路径。除了在迷宫中移除每个块并重新运行 A*,还有什么更聪明和优雅的解决方案?
我在想给每个墙节点(被 A* 忽略)一个暂定的 F 值,并将节点结构更改为也有一个 n 大小的列表,node *tentative_parent
其中 n 是迷宫中的墙数。这可能可行吗?
当您将一个节点添加到要考虑的节点列表中时,还要添加一个标志,表明通过该节点的路径是否已经穿过墙壁。
possibleNode.heuristic = currentNode.distance + heuristicEstimate(possibleNode)
possibleNode.goneThroughWall = currentNode.goneThroughWall || possibleNode.isAWall
allPossiblePaths.insert(possibleNode) // Priority queue sorted on Node.heuristic
然后在考虑来自节点的可能路径时,如果它没有穿过墙壁,则将相邻的墙壁视为公平路径。
foreach neighborNode in neighbors(someNode)
if !(someNode.goneThroughWall && neighborNode.isAWall)
addToPossiblePaths(neighborNode)
您已经必须保持从开始节点到正在处理的当前节点的距离,并且它使用您已经拥有的东西。
完整的概念证明:
我们看到它operator==
被定义为还考虑路径是否已经撞墙。这允许我们在需要时考虑该节点两次,当我们查看封闭集以查看我们是否已经遇到该节点时。在以下来源的示例迷宫中的中央走廊就是这种情况。
标有 的代码部分#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
显示了增强普通 A* 算法以使其能够穿过单面墙所需的部分。
#include <cassert>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <set>
#include <vector>
#define I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
const int width = 5;
const int height = 5;
// Define maze
const int maze[height][width] =
{ { 0, 1, 1, 0, 0 },
{ 0, 1, 0, 1, 0 },
{ 0, 1, 0, 1, 0 },
{ 0, 1, 0, 1, 0 },
{ 0, 0, 0, 0, 0 } };
// Square represents the actual structure of the maze
// Here, we only care about where it is, and whether it is a wall
struct Square {
Square(int _x, int _y)
: x(_x), y(_y) {}
bool operator==(const Square& rhs) const {
return x == rhs.x && y == rhs.y;
}
bool isAWall() const {
return maze[y][x];
}
int distance(const Square& goal) const {
return std::abs(x - goal.x) + std::abs(y - goal.y);
}
int x;
int y;
};
// Define start and end of maze
const Square goalSquare(3, 0);
const Square startSquare(0, 0);
// A PathNode describes the A* algorithm's path through the maze
// It keeps track of its associated Square
// its previous PathNode in the path
// the length of the path up to the current PathNode
// whether the path so far has goneThroughWall
struct PathNode {
explicit PathNode(const Square& s, int length = 0, const PathNode* _prev = NULL)
: square(s),
prev(_prev),
pathLength(length) {
heuristic = pathLength + square.distance(goalSquare);
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
if(prev)
goneThroughWall = prev->goneThroughWall || square.isAWall();
else
goneThroughWall = false;
// Sanity check, these should be the same
assert(goneThroughWall == hasGoneThroughAWall());
#endif
}
bool operator<(const PathNode& rhs) const {
return heuristic < rhs.heuristic;
}
// This is very important. When examining the closed set to see
// if we've already evaulated this node, we want to differentiate
// from whether we got to that node using a path through a wall.
//
// This is especially important in the given example maze.
// Without this differentiation, paths going up column 3 will hit
// old, closed paths going through the walls in column 2, and not
// find the best path.
bool operator==(const PathNode& rhs) const {
return square == rhs.square
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
&& goneThroughWall == rhs.goneThroughWall
#endif
;
}
bool weakEquals(const PathNode& rhs) const {
return square == rhs.square;
}
bool weakEquals(const Square& rhs) const {
return square == rhs;
}
// Sanity checker
bool hasGoneThroughAWall() const {
if(square.isAWall()) return true;
const PathNode* p = prev;
while(p) {
if(p->square.isAWall())
return true;
p = p->prev;
}
return false;
}
Square square;
const PathNode* prev;
int heuristic, pathLength;
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
bool goneThroughWall;
#endif
};
std::ostream& operator<<(std::ostream& ostr, const PathNode& p) {
ostr << "(" << p.square.x << ", " << p.square.y << ")";
if(p.square.isAWall())
ostr << " <- Wall!";
return ostr;
}
std::vector<Square> getNeighbors(const Square& s) {
std::vector<Square> neighbors;
if(s.x > 0)
neighbors.push_back(Square(s.x - 1, s.y));
if(s.x < width - 1)
neighbors.push_back(Square(s.x + 1, s.y));
if(s.y > 0)
neighbors.push_back(Square(s.x, s.y - 1));
if(s.y < height - 1)
neighbors.push_back(Square(s.x, s.y + 1));
return neighbors;
}
void printList(const PathNode* p, int i = 0) {
if(p) {
printList(p->prev, i + 1);
std::cout << *p << std::endl;
} else {
std::cout << "Length: " << i << std::endl;
}
}
typedef std::multiset<PathNode> Set;
int main(int argc, char** argv) {
// Print out maze
for(int j = 0; j < height; ++j) {
for(int i = 0; i < width; ++i) {
std::cout << " " << maze[j][i];
}
std::cout << std::endl;
}
std::cout << std::endl;
Set closedSet;
Set openSet;
openSet.insert(PathNode(startSquare)); // Start node (defined at line ~42)
int processedCount = 0;
while(!openSet.empty()) {
Set::iterator currentNode = openSet.begin();
++processedCount;
// We've found the goal, so print solution.
if(currentNode->weakEquals(goalSquare)) {
std::cout << "Processed nodes: " << processedCount << std::endl;
printList(&*currentNode);
return 0;
}
{
// Move from open set to closed set
Set::iterator del = currentNode;
currentNode = closedSet.insert(*currentNode);
openSet.erase(del);
}
std::vector<Square> neighbors = getNeighbors(currentNode->square);
for(unsigned int i = 0; i < neighbors.size(); ++i) {
PathNode currentNeighbor(neighbors[i], currentNode->pathLength + 1, &*currentNode);
// Skip if it is 2nd wall
if(
#ifdef I_AM_ALLOWED_TO_GO_THROUGH_A_WALL
currentNode->goneThroughWall &&
#endif
currentNeighbor.square.isAWall()
)
continue;
// Skip if it is already in the closed set
// Note: Using std::find here instead of std::multiset::find because
// std::multiset::find uses the definition !(a < b) && !(b < a) for
// searching. I want it to use my overloaded a == b.
if(find(closedSet.begin(), closedSet.end(), currentNeighbor) != closedSet.end())
continue;
// Skip if we were just there
const PathNode* p = currentNode->prev;
if(p && p->weakEquals(currentNeighbor))
continue;
// See if there is a better alternative in the open set
// Note: Using std::find here instead of std::multiset::find. See above.
Set::iterator contender = find(openSet.begin(), openSet.end(), currentNeighbor);
if(contender == openSet.end())
openSet.insert(currentNeighbor);
else if(currentNeighbor.pathLength < contender->pathLength) {
// We've found a better alternative, so replace
openSet.erase(contender);
openSet.insert(currentNeighbor);
}
}
}
std::cout << "Failure." << std::endl;
return 1;
}
寻找拆除墙壁的候选区域:
沿着您找到的原始 A* 路径,保留之前的距离,并且只要之前的距离大于当前距离,请注意之前的节点可能会移除墙壁。
我认为它将捕获影响最大的案例:
示例 1:
012 ***** 0 *R*G* 1 * * * 2 * * * 3 * * * 4 * * * 5 * * * 6 * * *****
在哪里:
R (0,0) 是你看起来像兔子的路线跑步者 G (2,0) 是目标
在这种情况下,我们从 (0,0) 开始,距离为 2。下一个可用的移动是 (0,1),距离为 2.23(5 的平方根)。您的距离刚刚增加,因此您之前的位置有可能被拆除。
示例 2:
0123456 ********* 0 *R* * 1 ** * * 2 * * * * 3 * * * * 4 * * * * 5 * * ** 6 * *G* *********
开始:(0,0) 结束:(6,6) A* 课程:(0,0), (1,1), (2,2), (3,3), (4,4), (5 ,5), (6,6) 距离:8.5、7.1、5.7、4.2、2.8、1.4(或 72、50、32、18、8、2 的平方根)没有最佳的墙可移除。
确定要拆除的墙:
在标记的节点和目标节点之间画一条线。沿该线的第一面墙(最靠近标记的节点)下降。给它一些绒毛,以允许沿着只会碰到角落的直线对角线移除墙壁。比较您的替代路径以找到最短的路径。