1

我是 mlpy 库的新手,正在寻找实现句子分类的最佳方法。我正在考虑使用 mply Basic Perceptron 来做到这一点,但据我了解,它使用的是预定义的向量大小,但我需要在机器学习时动态增加向量的大小,因为我不想创建一个巨大的向量(所有英语单词)。我真正需要做的是获取句子列表并从中构建分类器向量,然后当应用程序将获得新句子时,它会尝试将其自动分类到其中一个标签(监督学习)。

任何想法、想法和例子都会非常有帮助,

谢谢

4

1 回答 1

1
  1. 如果您事先拥有所有句子,则可以准备一个单词列表(删除停用词)以将每个单词映射到一个特征。向量的大小将是字典中的单词数。

  2. 一旦你有了它,你就可以训练一个感知器。

看看我的代码,其中我在 Perl 中进行了映射,然后在 matlab 中实现了感知器,以了解它的工作原理并在 python 中编写类似的实现

准备词袋模型(Perl)

use warnings;
use strict;

my %positions = ();
my $n = 0;
my $spam = -1;

open (INFILE, "q4train.dat");
open (OUTFILE, ">q4train_mod.dat");
while (<INFILE>) {
    chomp;
    my @values = split(' ', $_);
    my %frequencies = ();
    for (my $i = 0; $i < scalar(@values); $i = $i+2) {
        if ($i==0) {
            if ($values[1] eq 'spam') {
                $spam = 1;
            }
            else {
                $spam = -1;
            }
        }
        else {
            $frequencies{$values[$i]} = $values[$i+1];
            if (!exists ($positions{$values[$i]})) {
                $n++;
                $positions{$values[$i]} = $n;   
            }
        }
    }
    print OUTFILE $spam." ";
    my @keys = sort { $positions{$a} <=> $positions{$b} } keys %positions;
    foreach my $word (@keys) {
        if (exists ($frequencies{$word})) {
            print OUTFILE " ".$positions{$word}.":".$frequencies{$word};
        }
    }
    print OUTFILE "\n";
}
close (INFILE);
close (OUTFILE);

open (INFILE, "q4test.dat");
open (OUTFILE, ">q4test_mod.dat");
while (<INFILE>) {
    chomp;
    my @values = split(' ', $_);
    my %frequencies = ();
    for (my $i = 0; $i < scalar(@values); $i = $i+2) {
        if ($i==0) {
            if ($values[1] eq 'spam') {
                $spam = 1;
            }
            else {
                $spam = -1;
            }
        }
        else {
            $frequencies{$values[$i]} = $values[$i+1];
            if (!exists ($positions{$values[$i]})) {
                $n++;
                $positions{$values[$i]} = $n;
            }
        }
    }
    print OUTFILE $spam." ";
    my @keys = sort { $positions{$a} <=> $positions{$b} } keys %positions;
    foreach my $word (@keys) {
        if (exists ($frequencies{$word})) {
            print OUTFILE " ".$positions{$word}.":".$frequencies{$word};
        }
    }
    print OUTFILE "\n";
}
close (INFILE);
close (OUTFILE);

open (OUTFILE, ">wordlist.dat");
my @keys = sort { $positions{$a} <=> $positions{$b} } keys %positions;
foreach my $word (@keys) {
    print OUTFILE $word."\n";
}

感知器实现(Matlab)

clc; clear; close all;

[Ytrain, Xtrain] = libsvmread('q4train_mod.dat');
[Ytest, Xtest] = libsvmread('q4test_mod.dat');

mtrain = size(Xtrain,1);
mtest = size(Xtest,1);
n = size(Xtrain,2);

% part a
% learn perceptron
Xtrain_perceptron = [ones(mtrain,1) Xtrain];
Xtest_perceptron = [ones(mtest,1) Xtest];
alpha = 0.1;
%initialize
theta_perceptron = zeros(n+1,1);
trainerror_mag = 100000;
iteration = 0;
%loop
while (trainerror_mag>1000)
    iteration = iteration+1;
    for i = 1 : mtrain
        Ypredict_temp = sign(theta_perceptron'*Xtrain_perceptron(i,:)');
        theta_perceptron = theta_perceptron + alpha*(Ytrain(i)-Ypredict_temp)*Xtrain_perceptron(i,:)';
    end
    Ytrainpredict_perceptron = sign(theta_perceptron'*Xtrain_perceptron')';
    trainerror_mag = (Ytrainpredict_perceptron - Ytrain)'*(Ytrainpredict_perceptron - Ytrain)
end
Ytestpredict_perceptron = sign(theta_perceptron'*Xtest_perceptron')';
testerror_mag = (Ytestpredict_perceptron - Ytest)'*(Ytestpredict_perceptron - Ytest)

我不想再次在 Python 中编写相同的代码,但这应该会给你一个关于如何继续的方向

于 2014-07-19T11:45:31.207 回答