如果我理解正确,您可以查看crossprod
and stack
:
crossprod(table(stack(l)))
# ind
# ind A B C D
# A 4 2 2 0
# B 2 2 1 0
# C 2 1 4 1
# D 0 0 1 2
如果您data.frame
只想要一个相关值,您可以扩展这个想法,如下所示:
写一个漂亮的函数
listIntersect <- function(inList) {
X <- crossprod(table(stack(inList)))
X[lower.tri(X)] <- NA
diag(X) <- NA
out <- na.omit(data.frame(as.table(X)))
out[order(out$ind), ]
}
应用它
listIntersect(l)
# ind ind.1 Freq
# 5 A B 2
# 9 A C 2
# 13 A D 0
# 10 B C 1
# 14 B D 0
# 15 C D 1
性能似乎相当不错。
展开list
:
L <- unlist(replicate(100, l, FALSE), recursive=FALSE)
names(L) <- make.unique(names(L))
设置一些功能进行测试:
fun1 <- function(l) listIntersect(l)
fun2 <- function(l) apply( combn( l , 2 ) , 2 , function(x) length( intersect( unlist( x[1]) , unlist(x[2]) ) ) )
fun3 <- function(l) {
m1 <- combn(names(l),2)
val <- sapply(split(m1, col(m1)),function(x) {x1 <- l[[x[1]]]; x2 <- l[[x[2]]]; length(intersect(x1, x2))})
Ind <- apply(m1,2,paste,collapse="int")
data.frame(Ind, val, stringsAsFactors=F)
}
查看时间:
system.time(F1 <- fun1(L))
# user system elapsed
# 0.33 0.00 0.33
system.time(F2 <- fun2(L))
# user system elapsed
# 4.32 0.00 4.31
system.time(F3 <- fun3(L))
# user system elapsed
# 6.33 0.00 6.33
每个人似乎对结果的排序方式不同,但数字匹配:
table(F1$Freq)
#
# 0 1 2 4
# 20000 20000 29900 9900
table(F2)
# F2
# 0 1 2 4
# 20000 20000 29900 9900
table(F3$val)
#
# 0 1 2 4
# 20000 20000 29900 9900