一般来说,我是机器人和电子产品的新手,所以请不要以为我尝试了任何你认为显而易见的东西。
我正在尝试创建一个基本上可以自行运行的推车(简单的 AI 例程来避开障碍物,从 pt.A 到 pt.B 拐角处,跟随路线等)。我正在将 Adafruit Arduino Uno R3 与 Adafruit Motor Shield v2 和 MPU-6050 放在一起。我正在使用电机屏蔽上的“面包板”作为电路,在那里焊接所有东西。
我可以使用自己的脚本让所有部件独立工作:Motor Shield 使用 Adafruit 库按预期驱动 4 个电机;我正在使用 MPU-6050 的“JRowberg”库,并从示例 MPU6050_DMP6.ino 开始,只要推车电机关闭,它就可以正常工作。我对下面示例脚本的唯一更改是电机启动和一些简单的电机命令。
只要我关闭关闭电机的开关,一切似乎都很好:它会连续输出到串行窗口,其中包含欧拉数据,我认为这是正确的。然而,在我打开电机电源几秒钟后(车轮开始转动),它只是挂起/冻结:串行窗口的输出停止(有时在中线),车轮继续转动他们最后一次变化的速度。有时我会看到“FIFO 溢出”错误,但并非总是如此。有时我会在某些浮点值挂起之前看到“nan”,但并非总是如此。
我尝试过的一些事情,所有这些都改变了注意事项: * 我已经将 MPU-6050 板换成了同一制造商的另一块板。* 我尝试使用带状电缆将 MPU-6050 从电机上移开。* 我已经使用 JRowber 的建议更改了 I2C 时钟(更改 .h 文件并更改 TWBR 变量的值),但我认为我没有尝试过所有可能的值。* 我已经在 AFMS.begin() 命令中更改了 MotorShield 的速度,但同样,可能还有其他值我没有尝试过,而且我不确定它和 TWBR 值需要如何同步成为。
还有其他一些事情,都无济于事。
下面是一个对我来说失败的示例脚本:
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#include "Adafruit_MotorShield.h"
#include "utility/Adafruit_PWMServoDriver.h"
#define DEBUG 1
MPU6050 mpu;
#define OUTPUT_READABLE_EULER
#define LED_PIN 13
bool blinkState = false;
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };
Adafruit_MotorShield AFMS = Adafruit_MotorShield();
#define NUM_MOTORS 4
#define MOTOR_FL 0
#define MOTOR_FR 1
#define MOTOR_RR 2
#define MOTOR_RL 3
Adafruit_DCMotor *myMotors[NUM_MOTORS] = {
AFMS.getMotor(1),
AFMS.getMotor(2),
AFMS.getMotor(3),
AFMS.getMotor(4),
};
#define CHANGE_SPEED_TIME 500
long changeSpeedMillis = 0;
int curSpeed = 30;
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
mpuInterrupt = true;
}
void setup() {
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
Serial.begin(115200);
while (!Serial); // wait for Leonardo enumeration, others continue immediately
// start the motor shield.
AFMS.begin(); // create with the default frequency 1.6KHz
// AFMS.begin(4000); // OR with a different frequency, say 4KHz
// kill all the motors.
myMotors[MOTOR_FL]->run(BRAKE);
myMotors[MOTOR_FL]->setSpeed(0);
myMotors[MOTOR_FR]->run(BRAKE);
myMotors[MOTOR_FR]->setSpeed(0);
myMotors[MOTOR_RR]->run(BRAKE);
myMotors[MOTOR_RR]->setSpeed(0);
myMotors[MOTOR_RL]->run(BRAKE);
myMotors[MOTOR_RL]->setSpeed(0);
Serial.println("Motor Shield ready!");
Serial.println(F("Initializing I2C devices..."));
mpu.initialize();
// verify connection
Serial.println(F("Testing device connections..."));
Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
// wait for ready
Serial.println(F("\nSend any character to begin DMP programming and demo: "));
while (Serial.available() && Serial.read()); // empty buffer
while (!Serial.available()); // wait for data
while (Serial.available() && Serial.read()); // empty buffer again
// load and configure the DMP
Serial.println(F("Initializing DMP..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// turn on the DMP, now that it's ready
Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(0, dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the code will be 1)
Serial.print(F("DMP Initialization failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}
// configure LED for output
pinMode(LED_PIN, OUTPUT);
}
void loop() {
// if programming failed, don't try to do anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) {
// as per Vulpo's post.
delay(10);
if (millis() > changeSpeedMillis) {
curSpeed += 20;
if (curSpeed > 256) {
curSpeed = 30;
}
Serial.print("changing speed to: ");
Serial.println(curSpeed);
myMotors[MOTOR_FL]->run(FORWARD);
myMotors[MOTOR_FL]->setSpeed(curSpeed);
myMotors[MOTOR_FR]->run(FORWARD);
myMotors[MOTOR_FR]->setSpeed(curSpeed);
myMotors[MOTOR_RR]->run(FORWARD);
myMotors[MOTOR_RR]->setSpeed(curSpeed);
myMotors[MOTOR_RL]->run(FORWARD);
myMotors[MOTOR_RL]->setSpeed(curSpeed);
changeSpeedMillis = millis() + CHANGE_SPEED_TIME;
}
}
// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
Serial.println(F("FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);
// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;
#ifdef OUTPUT_READABLE_EULER
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetEuler(euler, &q);
Serial.print("euler\t");
Serial.print(euler[0] * 180/M_PI);
Serial.print("\t");
Serial.print(euler[1] * 180/M_PI);
Serial.print("\t");
Serial.println(euler[2] * 180/M_PI);
#endif
// blink LED to indicate activity
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);
}
}