塔尔,
您可以使用 R 和XML
包来执行此操作,但是(该死)这是您尝试解析的一些格式不正确的 HTML。事实上,在大多数情况下,您都希望使用该readHTMLTable()
函数,该函数已在前面的线程中介绍过。
然而,鉴于这个丑陋的 HTML,我们将不得不使用RCurl
包来提取原始 HTML 并创建一些自定义函数来解析它。这个问题有两个组成部分:
- 使用包中的函数和一些正则表达式魔法从基本网页( http://gtrnadb.ucsc.edu/)获取所有基因组 URL :-)
getURLContent()
RCurl
- 然后获取该 URL 列表并抓取您要查找的数据,然后将其粘贴到
data.frame
.
所以,这里...
library(RCurl)
### 1) First task is to get all of the web links we will need ##
base_url<-"http://gtrnadb.ucsc.edu/"
base_html<-getURLContent(base_url)[[1]]
links<-strsplit(base_html,"a href=")[[1]]
get_data_url<-function(s) {
u_split1<-strsplit(s,"/")[[1]][1]
u_split2<-strsplit(u_split1,'\\"')[[1]][2]
ifelse(grep("[[:upper:]]",u_split2)==1 & length(strsplit(u_split2,"#")[[1]])<2,return(u_split2),return(NA))
}
# Extract only those element that are relevant
genomes<-unlist(lapply(links,get_data_url))
genomes<-genomes[which(is.na(genomes)==FALSE)]
### 2) Now, scrape the genome data from all of those URLS ###
# This requires two complementary functions that are designed specifically
# for the UCSC website. The first parses the data from a -structs.html page
# and the second collects that data in to a multi-dimensional list
parse_genomes<-function(g) {
g_split1<-strsplit(g,"\n")[[1]]
g_split1<-g_split1[2:5]
# Pull all of the data and stick it in a list
g_split2<-strsplit(g_split1[1],"\t")[[1]]
ID<-g_split2[1] # Sequence ID
LEN<-strsplit(g_split2[2],": ")[[1]][2] # Length
g_split3<-strsplit(g_split1[2],"\t")[[1]]
TYPE<-strsplit(g_split3[1],": ")[[1]][2] # Type
AC<-strsplit(g_split3[2],": ")[[1]][2] # Anticodon
SEQ<-strsplit(g_split1[3],": ")[[1]][2] # ID
STR<-strsplit(g_split1[4],": ")[[1]][2] # String
return(c(ID,LEN,TYPE,AC,SEQ,STR))
}
# This will be a high dimensional list with all of the data, you can then manipulate as you like
get_structs<-function(u) {
struct_url<-paste(base_url,u,"/",u,"-structs.html",sep="")
raw_data<-getURLContent(struct_url)
s_split1<-strsplit(raw_data,"<PRE>")[[1]]
all_data<-s_split1[seq(3,length(s_split1))]
data_list<-lapply(all_data,parse_genomes)
for (d in 1:length(data_list)) {data_list[[d]]<-append(data_list[[d]],u)}
return(data_list)
}
# Collect data, manipulate, and create data frame (with slight cleaning)
genomes_list<-lapply(genomes[1:2],get_structs) # Limit to the first two genomes (Bdist & Spurp), a full scrape will take a LONG time
genomes_rows<-unlist(genomes_list,recursive=FALSE) # The recursive=FALSE saves a lot of work, now we can just do a straigh forward manipulation
genome_data<-t(sapply(genomes_rows,rbind))
colnames(genome_data)<-c("ID","LEN","TYPE","AC","SEQ","STR","NAME")
genome_data<-as.data.frame(genome_data)
genome_data<-subset(genome_data,ID!="</PRE>") # Some malformed web pages produce bad rows, but we can remove them
head(genome_data)
生成的数据框包含与每个基因组条目相关的七列:ID、长度、类型、序列、字符串和名称。名称列包含基础基因组,这是我对数据组织的最佳猜测。这是它的样子:
head(genome_data)
ID LEN TYPE AC SEQ
1 Scaffold17302.trna1 (1426-1498) 73 bp Ala AGC at 34-36 (1459-1461) AGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTTTCCA
2 Scaffold20851.trna5 (43038-43110) 73 bp Ala AGC at 34-36 (43071-43073) AGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTCTCCA
3 Scaffold20851.trna8 (45975-46047) 73 bp Ala AGC at 34-36 (46008-46010) TGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTCTCCA
4 Scaffold17302.trna2 (2514-2586) 73 bp Ala AGC at 34-36 (2547-2549) GGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACAGGGATCGATGCCCGGGTTCTCCA
5 Scaffold51754.trna5 (253637-253565) 73 bp Ala AGC at 34-36 (253604-253602) CGGGGGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTCCTCCA
6 Scaffold17302.trna4 (6027-6099) 73 bp Ala AGC at 34-36 (6060-6062) GGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGAGTTCTCCA
STR NAME
1 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
2 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
3 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
4 >>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>.>>>.......<<<.<<<<<<<<. Spurp
5 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
6 >>>>>>>..>>>>........<<<<.>>>>>.......<<<<<......>>>>.......<<<<.<<<<<<<. Spurp
我希望这会有所帮助,并感谢周日下午有趣的小 R 挑战!