0

我需要将 32 位比特流输出到 verilog 中的引脚上。我知道 verilog 有流媒体运营商打包和解包,但我不相信他们会做我想做的事。

我有 32x512 FIFO RAM 用于存储数据。变量“I”的数据存储在前 32 位,变量“Q”的数据存储在接下来的 32 位(FIFO 的其余部分以这种交替方式保存数据)。我需要不断地从 FIFO RAM 中获取 32 位流,并将 32 位数据流输出到引脚上。我的 FIFO 有三个输出信号(一个用于 32 位数据流的信号(32_data),一个表示 FIFO 为空时的信号(32_empty),以及一个表示 FIFO 已满时的信号(32_full)) 我的 sudo 代码是以下(这是 sudo 代码,因为我知道如何做其他所有事情,但我需要帮助的部分,我想保持简单以便理解):

process @ posedge clock
begin
  if (32_empty != 1) then //if the FIFO has data
    if (32_full == 1) then //if the FIFO is full, then we lose data (for testing purposes to know if I need to make the RAM bigger
       PIN_1 <= 1; //output onto a pin that the FIFO is full
       PIN_2 <= 0; //clear pin 2 from outputting data for "I"
       PIN_3 <= 0; //clear pin 3 from outputting data for "Q"
    else if (en_Q == 0)
       (stream 32bit data for variable "I" onto pin 2) //variable "I" output//HELP-This is where I need help figuring out how to stream the output, 32_data, onto a pin
       en_Q <= ~en_Q; // toggle en_Q so next 32bit stream will be for "Q"
    else if (en_Q ==1)
       (stream 32bit data for variable "Q" onto pin 3) //variable "Q" output//HELP-This is where I need help figuring out how to stream the output, 32_data, onto a pin
       en_Q <= ~en_Q; // toggle en_Q so next 32bit stream will be for "I"
end                 

如果您能帮助我弄清楚如何将 32 位数据流传输到引脚上,那就太好了!提前致谢

我已经添加了建议。我可以用 for 循环将数据放在引脚上吗?以下是我的代码段,底部是移位寄存器并输出到引脚:

`// 与数据捕获相关的线和寄存器线 capture_clk; 注册 [31:0] 捕获数据;电线捕获_en; reg [4:0] 减速;线捕获_full;

    reg            capture_open;
    reg            capture_open_cross;
    reg            capture_has_been_full;
    reg            capture_has_been_nonfull;
    reg            has_been_full_cross;
    reg            has_been_full;

  // Data capture section
    // ====================

    always @(posedge capture_clk)
      begin
    if (capture_en)
      capture_data <= user_w_write_32_data; // Bogus data source

    // The slowdown register limits the data pace to 1/32 the bus_clk
    // when capture_clk = bus_clk. This is necessary, because the
    // core in the evaluation kit is configured for simplicity, and
    // not for performance. Sustained data rates of 200 MB/sec are
    // easily reached with performance-oriented setting.
    // The slowdown register has no function in a real-life application.
    slowdown <= slowdown + 1;

    // capture_has_been_full remembers that the FIFO has been full
    // until the file is closed. capture_has_been_nonfull prevents
    // capture_has_been_full to respond to the initial full condition
    // every FIFO displays on reset.

    if (!capture_full)
      capture_has_been_nonfull <= 1;
    else if (!capture_open)
      capture_has_been_nonfull <= 0;

    if (capture_full && capture_has_been_nonfull)
      capture_has_been_full <= 1;
    else if (!capture_open)
      capture_has_been_full <= 0;

      end

    // The dependency on slowdown is only for bogus data
    assign capture_en = capture_open && !capture_full && 
                 !capture_has_been_full &&
                 (slowdown == 0);

    // Clock crossing logic: bus_clk -> capture_clk
    always @(posedge capture_clk)
      begin
    capture_open_cross <= user_r_read_32_open;
    capture_open <= capture_open_cross;
      end

    // Clock crossing logic: capture_clk -> bus_clk
    always @(posedge bus_clk)
      begin
    has_been_full_cross <= capture_has_been_full;
    has_been_full <= has_been_full_cross;
      end

    // The user_r_read_32_eof signal is required to go from '0' to '1' only on
    // a clock cycle following an asserted read enable, according to Xillybus'
    // core API. This is assured, since it's a logical AND between
    // user_r_read_32_empty and has_been_full. has_been_full goes high when the
    // FIFO is full, so it's guaranteed that user_r_read_32_empty is low when
    // that happens. On the other hand, user_r_read_32_empty is a FIFO's empty
    // signal, which naturally meets the requirement.

    assign user_r_read_32_eof = user_r_read_32_empty && has_been_full;
    assign user_w_write_32_full = 0;

    // The data capture clock here is bus_clk for simplicity, but clock domain
    // crossing is done properly, so capture_clk can be an independent clock
    // without any other changes.

    assign capture_clk = bus_clk;

    async_fifo_32x512 fifo_32 //FIFO created using Xilinx FIFO Generator Wizard
      (
        .rst(!user_r_read_32_open),
        .wr_clk(capture_clk),
        .rd_clk(bus_clk),
        .din(capture_data),
        .wr_en(capture_en),
        .rd_en(user_r_read_32_rden),
        .dout(user_r_read_32_data),
        .full(capture_full),
        .empty(user_r_read_32_empty)
        );

        reg Q_en = 1'b0; //starting value is 0 because first 32bit is I
        reg [31:0] data_outI;
        reg [31:0] data_outQ;
        reg I;
        reg Q;
        integer counter;

        always @(posedge bus_clk) begin
            if(Q_en == 1'b0) begin //To output to I signal
                data_outI <= user_r_read_32_data;

                for (counter = 0; counter < 32; counter = counter + 1) begin //output to pins
                    I = data_outI[0];
                    data_outI <= (data_outI >> 1);
                    Q = data_outQ[0];
                    data_outQ <= (data_outQ >> 1);
                    end

                Q_en <= ~Q_en;
                end
            else if(Q_en == 1'b1) begin //To output to Q signal
                data_outQ <= user_r_read_32_data;

                for (counter = 0; counter < 32; counter = counter + 1) begin //output to pins
                    I = data_outI[0];
                    data_outI <= (data_outI >> 1);
                    Q = data_outQ[0];
                    data_outQ <= (data_outQ >> 1);
                    end

                Q_en <= ~Q_en;
                end
            end

            assign PS_GPIO_ONE_I = I; //Assign Pin I
            assign PS_GPIO_TWO_Q = Q; //Assign Pin Q

`

4

1 回答 1

0

基本上,您需要执行以下操作:

  • 从 fifo 中获取一个项目到一个 32 位寄存器中(让我们调用data
  • 每个时钟周期,将 lsbdata放到引脚上,然后右移data一个值。
  • 继续重复此移位 32 个时钟周期,直到所有数据都移出。
  • 切换 en_Q 的值,并获取另一个 32 位项目。

您应该能够制作一个可以处理此序列的小型状态机。您不能像在伪代码中所做的那样在单个时钟周期内移出所有 32 位,除非您还有 32x 时钟可用,而这可能是一个更复杂的设计。

于 2014-06-24T03:43:10.427 回答