我正在尝试制作一个程序,该程序通过模拟一行文本并从中获取每个字母的图像。考虑二维像素阵列的图像,如果连续列中存在黑色像素,则这些列将被写入缓冲区。一旦到达没有黑色像素的列(即字母之间的空间),缓冲区将变成已检测到的字母的图像。但是,我遇到了一个我不明白的编译器错误,希望你们能帮助我。希望您也能发现我没有发现的任何逻辑错误。
无论如何,代码:
from PIL import Image
import numpy as np
class ShapeDetect:
def __init__(self):
self.img = Image.open("test3.jpg")
self.pixels = self.img.load()
self.l = np.empty([0, 0])
self.valid_pixels = ['(0, 0, 0)', '(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)', '(4, 4, 4)', '(5, 5, 5)']
def printPixels(self):
for i in range(self.img.size[0]):
for j in range(self.img.size[1]):
print(self.pixels[i, j])
def processPixels(self):
n = 1
# If a black pixel is in the current column, add it to l
for i in range (self.img.size[0]):
for j in range(self.img.size[1]):
if str(self.pixels[i, j]) in self.valid_pixels:
self.writeColumn(i)
break
# Once a whole shape has been written to l, make l into an image
else:
if self.l.size > 0 and j == self.img.size[1] - 1:
new_img = Image.new(self.img.mode, (self.l.size, 100))
new_img.putdata(self.l)
new_img.save(str(n) + ".jpg")
n = n + 1
self.l = np.empty([0], [0])
def writeColumn(self, n):
# put column in pixels in temp, then append temp to l
temp = np.zeros((1, self.img.size[1]), dtype=np.int64)
for i in range(self.img.size[1]):
temp[0, i], = (self.pixels[n, i])
np.append(self.l, temp, axis = 1)
if __name__ == "__main__":
shapeDetect = ShapeDetect()
ShapeDetect.processPixels(shapeDetect)
我得到的错误是:
Traceback (most recent call last):
File "SD.py", line 46, in <module>
ShapeDetect.processPixels(shapeDetect)
File "SD.py", line 23, in processPixels
self.writeColumn(i)
File "SD.py", line 40, in writeColumn
temp[0, i], = (self.pixels[n, i])
ValueError: too many values to unpack