你要
coef(summary(fit))[,4]
它从显示的表格输出中提取p值的列向量summary(fit)
。在您运行模型拟合之前,实际上不会计算p值。summary()
顺便说一句,如果可以的话,请使用提取器函数而不是深入研究对象:
fit$coefficients[2]
应该
coef(fit)[2]
如果没有提取器功能,str()
是你的朋友。它允许您查看任何对象的结构,从而可以查看对象包含的内容以及如何提取它:
summ <- summary(fit)
> str(summ, max = 1)
List of 17
$ call : language glm(formula = counts ~ outcome + treatment, family = poisson())
$ terms :Classes 'terms', 'formula' length 3 counts ~ outcome + treatment
.. ..- attr(*, "variables")= language list(counts, outcome, treatment)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. ..- attr(*, "term.labels")= chr [1:2] "outcome" "treatment"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(counts, outcome, treatment)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "factor" "factor"
.. .. ..- attr(*, "names")= chr [1:3] "counts" "outcome" "treatment"
$ family :List of 12
..- attr(*, "class")= chr "family"
$ deviance : num 5.13
$ aic : num 56.8
$ contrasts :List of 2
$ df.residual : int 4
$ null.deviance : num 10.6
$ df.null : int 8
$ iter : int 4
$ deviance.resid: Named num [1:9] -0.671 0.963 -0.17 -0.22 -0.956 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...
$ coefficients : num [1:5, 1:4] 3.04 -4.54e-01 -2.93e-01 1.34e-15 1.42e-15 ...
..- attr(*, "dimnames")=List of 2
$ aliased : Named logi [1:5] FALSE FALSE FALSE FALSE FALSE
..- attr(*, "names")= chr [1:5] "(Intercept)" "outcome2" "outcome3" "treatment2" ...
$ dispersion : num 1
$ df : int [1:3] 5 4 5
$ cov.unscaled : num [1:5, 1:5] 0.0292 -0.0159 -0.0159 -0.02 -0.02 ...
..- attr(*, "dimnames")=List of 2
$ cov.scaled : num [1:5, 1:5] 0.0292 -0.0159 -0.0159 -0.02 -0.02 ...
..- attr(*, "dimnames")=List of 2
- attr(*, "class")= chr "summary.glm"
因此,我们注意到coefficients
我们可以使用 提取的组件coef()
,但其他组件没有提取器,例如null.deviance
,您可以将其提取为summ$null.deviance
。