adj_matrix = nx.from_numpy_matrix
将帮助您创建一个邻接矩阵,这将是您的亲和矩阵。您需要像这样将其提供给 scikit-learn:SpectralClustering(affinity = 'precomputed', assign_labels="discretize",random_state=0,n_clusters=2).fit_predict(adj_matrix)
如果您没有任何相似度矩阵,您可以将 'affinity' 参数的值更改为 'rbf' 或 'nearest_neighbors'。下面的示例解释了整个光谱聚类管道:
import sklearn
import networkx as nx
import matplotlib.pyplot as plt
'''Graph creation and initialization'''
G=nx.Graph()
G.add_edge(1,2) # default edge weight=1
G.add_edge(3,4,weight=0.2) #weight represents edge weight or affinity
G.add_edge(2,3,weight=0.9)
G.add_edge("Hello", "World", weight= 0.6)
'''Matrix creation'''
adj_matrix = nx.to_numpy_matrix(G) #Converts graph to an adj matrix with adj_matrix[i][j] represents weight between node i,j.
node_list = list(G.nodes()) #returns a list of nodes with index mapping with the a
'''Spectral Clustering'''
clusters = SpectralClustering(affinity = 'precomputed', assign_labels="discretize",random_state=0,n_clusters=2).fit_predict(adj_matrix)
plt.scatter(nodes_list,clusters,c=clusters, s=50, cmap='viridis')
plt.show()