9

我对 python 和 numpy 很陌生,如果我误用了一些术语,我很抱歉。

我已将栅格转换为 2D numpy 数组,希望能够快速有效地对其进行计算。

  • 我需要在一个 numpy 数组中获取累积总和,以便对于每个值,我生成小于或等于该值的所有值的总和,并将该值写入一个新数组。我需要以这种方式循环遍历整个数组。

  • 我还需要在 1 到 100 之间缩放输出,但这似乎
    更简单。

尝试举例说明:

array([[ 4,  1  ,  3   ,  2] dtype=float32)

我希望输出值(仅手动执行第一行)读取:

array([[ 10,  1  ,  6   ,  3], etc.

关于如何做到这一点的任何想法?

提前致谢!


对于任何有兴趣的人来说,即将完成的脚本:

#Generate Cumulative Thresholds
#5/15/14

import os
import sys
import arcpy
import numpy as np

#Enable overwriting output data
arcpy.env.overwriteOutput=True

#Set working directory
os.chdir("E:/NSF Project/Salamander_Data/Continuous_Rasters/Canadian_GCM/2020/A2A/")

#Set geoprocessing variables
inRaster = "zero_eurycea_cirrigera_CA2A2020.tif"
des = arcpy.Describe(inRaster)
sr = des.SpatialReference
ext = des.Extent
ll = arcpy.Point(ext.XMin,ext.YMin)

#Convert GeoTIFF to numpy array
a = arcpy.RasterToNumPyArray(inRaster)

#Flatten for calculations
a.flatten()

#Find unique values, and record their indices to a separate object
a_unq, a_inv = np.unique(a, return_inverse=True)

#Count occurences of array indices
a_cnt = np.bincount(a_inv)

#Cumulatively sum the unique values multiplied by the number of
#occurences, arrange sums as initial array
b = np.cumsum(a_unq * a_cnt)[a_inv]

#Divide all values by 10 (reverses earlier multiplication done to
#facilitate accurate translation of ASCII scientific notation
#values < 1 to array)
b /= 10

#Rescale values between 1 and 100
maxval = np.amax(b)
b /= maxval
b *= 100

#Restore flattened array to shape of initial array
c = b.reshape(a.shape)

#Convert the array back to raster format
outRaster = arcpy.NumPyArrayToRaster(c,ll,des.meanCellWidth,des.meanCellHeight)

#Set output projection to match input
arcpy.DefineProjection_management(outRaster, sr)

#Save the raster as a TIFF
outRaster.save("C:/Users/mkcarte2/Desktop/TestData/outRaster.tif")

sys.exit()
4

4 回答 4

11

根据您想要处理重复的方式,这可能会起作用:

In [40]: a
Out[40]: array([4, 4, 2, 1, 0, 3, 3, 1, 0, 2])

In [41]: a_unq, a_inv = np.unique(a, return_inverse=True)

In [42]: a_cnt = np.bincount(a_inv)

In [44]: np.cumsum(a_unq * a_cnt)[a_inv]
Out[44]: array([20, 20,  6,  2,  0, 12, 12,  2,  0,  6], dtype=int64)

当然,您的阵列在哪里a变平,然后您必须将其重塑为原始形状。


当然,一旦 numpy 1.9 发布,您可以将上面的第 41 行和第 42 行压缩成一个更快的单行:

a_unq, a_inv, a_cnt = np.unique(a, return_inverse=True, return_counts=True)
于 2014-05-14T20:02:31.287 回答
1

Edit:

This is ugly, but I think it finally works:

import numpy as np

def cond_cum_sum(my_array):
    my_list = []
    prev = -np.inf
    prev_sum = 0
    for ele in my_array:
        if prev != ele:
            prev_sum += ele
        my_list.append(prev_sum)
        prev = ele
    return np.array(my_list)

a = np.array([[4,2,2,3],
              [9,0,5,2]], dtype=np.float32)

flat_a = a.flatten()
flat_a.sort() 

temp = np.argsort(a.ravel())   

cum_sums = cond_cum_sum(flat_a)

result_1 = np.zeros(len(flat_a))
result_1[temp] = cum_sums

result = result_1.reshape(a.shape)

Result:

>>> result
array([[  9.,   2.,   2.,   5.],
       [ 23.,   0.,  14.,   2.]])
于 2014-05-14T19:10:09.093 回答
1

用更少的numpy和更多的python:

a = np.array([[4,2,2,3],
              [9,0,5,2]], dtype=np.float32)

np.array([[sum(x for x in arr if x <= subarr) for subarr in arr] for arr in a])
# array([[ 11.,   4.,   4.,   7.],
#        [ 16.,   0.,   7.,   2.]])

如果总和只考虑项目一次,无论它们出现多少,那么,

np.array([[sum(set(x for x in arr if x <= subarr)) for subarr in arr] for arr in a]) 
# array([[  9.,   2.,   2.,   5.],
#        [ 16.,   0.,   7.,   2.]])
于 2014-05-14T20:16:12.197 回答
1

这个怎么样:

a=np.array([ 4,  1  ,  3   ,  2])

np.array([np.sum(a[a<=x])for x in a])

array([10,  1,  6,  3])

对于二维数组(假设您想要整个数组的总和,而不仅仅是行):

a=np.array([[ 4,  1  ,  3   ,  2],[ 5,  1  ,  3   ,  2]])

np.array([[np.sum(a[a<=x])for x in a[y,:]]for y in range(a.shape[0])])

维斯

array([[16,  2, 12,  6],
       [21,  2, 12,  6]])
于 2014-05-14T21:22:10.637 回答