4

我正在使用一个简单的微基准研究缓存效果。

我认为如果 N 大于缓存大小,那么缓存在每个第一次读取缓存行时都会进行一次未命中操作。

在我的机器中,缓存行大小=64Byte,所以我认为完全缓存发生 N/8 未命中操作,缓存研磨表明。

但是,性能工具显示不同的结果。它仅发生 34,265 次缓存未命中操作。

我怀疑硬件预取,所以在BIOS中关闭这个功能。无论如何,结果是一样的。

我真的不知道为什么 perf 工具的缓存未命中发生比“cachegrind”非常小的操作。有人能给我一个合理的解释吗?


1. 这是一个简单的微基准程序。

    #include <stdio.h>
    #define N 10000000

    double A[N];

    int main(){

    int i;
     double temp=0.0;

     for (i=0 ; i<N ; i++){
         temp = A[i]*A[i];
     }   

     return 0;
}   


2. 以下结果是 cachegrind 的输出:

    ==27612== Cachegrind, a cache and branch-prediction profiler
    ==27612== Copyright (C) 2002-2013, and GNU GPL'd, by Nicholas Nethercote et al.
    ==27612== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info
    ==27612== Command: ./test
    ==27612== 
    --27612-- warning: L3 cache found, using its data for the LL simulation.
    ==27612== 
    ==27612== I   refs:      110,102,998
    ==27612== I1  misses:            728
    ==27612== LLi misses:            720
    ==27612== I1  miss rate:        0.00%
    ==27612== LLi miss rate:        0.00%
    ==27612== 
    ==27612== D   refs:       70,038,455  (60,026,965 rd   + 10,011,490 wr)
    ==27612== D1  misses:      1,251,802  ( 1,251,288 rd   +        514 wr)
    ==27612== LLd misses:      1,251,624  ( 1,251,137 rd   +        487 wr)
    ==27612== D1  miss rate:         1.7% (       2.0%     +        0.0%  )
    ==27612== LLd miss rate:         1.7% (       2.0%     +        0.0%  )
    ==27612== 
    ==27612== LL refs:         1,252,530  ( 1,252,016 rd   +        514 wr)
    ==27612== LL misses:       1,252,344  ( 1,251,857 rd   +        487 wr)
    ==27612== LL miss rate:          0.6% (       0.7%     +        0.0%  )

    Generate a report File
    --------------------------------------------------------------------------------
    I1 cache:         32768 B, 64 B, 4-way associative
    D1 cache:         32768 B, 64 B, 8-way associative
    LL cache:         8388608 B, 64 B, 16-way associative
    Command:          ./test
    Data file:        cache_block
    Events recorded:  Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    Events shown:     Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    Event sort order: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    Thresholds:       0.1 100 100 100 100 100 100 100 100
    Include dirs:     
    User annotated:   /home/jin/1_dev/99_test/OI/test.s
    Auto-annotation:  off

--------------------------------------------------------------------------------
         Ir I1mr ILmr         Dr      D1mr      DLmr         Dw D1mw DLmw 
--------------------------------------------------------------------------------
110,102,998  728  720 60,026,965 1,251,288 1,251,137 10,011,490  514  487  PROGRAM TOTALS

--------------------------------------------------------------------------------
         Ir I1mr ILmr         Dr      D1mr      DLmr         Dw D1mw DLmw          file:function
--------------------------------------------------------------------------------
110,000,011    1    1 60,000,003 1,250,000 1,250,000 10,000,003    0    0 /home/jin/1_dev/99_test/OI/test.s:main

--------------------------------------------------------------------------------
-- User-annotated source: /home/jin/1_dev/99_test/OI/test.s
--------------------------------------------------------------------------------
        Ir I1mr ILmr         Dr      D1mr      DLmr         Dw D1mw DLmw 

-- line 2 ----------------------------------------
         .    .    .          .         .         .          .    .    .            .comm   A,80000000,32
         .    .    .          .         .         .          .    .    .    .comm   B,80000000,32
         .    .    .          .         .         .          .    .    .    .text
         .    .    .          .         .         .          .    .    .    .globl   main
         .    .    .          .         .         .          .    .    .    .type   main, @function
         .    .    .          .         .         .          .    .    .  main:
         .    .    .          .         .         .          .    .    .  .LFB0:
         .    .    .          .         .         .          .    .    .    .cfi_startproc
         1    0    0          0         0         0          1    0    0    pushq   %rbp
         .    .    .          .         .         .          .    .    .    .cfi_def_cfa_offset 16
         .    .    .          .         .         .          .    .    .    .cfi_offset 6, -16
         1    0    0          0         0         0          0    0    0    movq    %rsp, %rbp
         .    .    .          .         .         .          .    .    .    .cfi_def_cfa_register 6
         1    0    0          0         0         0          0    0    0    movl    $0, %eax
         1    1    1          0         0         0          1    0    0    movq    %rax, -16(%rbp)
         1    0    0          0         0         0          1    0    0    movl    $0, -4(%rbp)
         1    0    0          0         0         0          0    0    0    jmp .L2
         .    .    .          .         .         .          .    .    .  .L3:
10,000,000    0    0 10,000,000         0         0          0    0    0    movl    -4(%rbp), %eax
10,000,000    0    0          0         0         0          0    0    0    cltq
10,000,000    0    0 10,000,000 1,250,000 1,250,000          0    0    0    movsd   A(,%rax,8), %xmm1 
10,000,000    0    0 10,000,000         0         0          0    0    0    movl    -4(%rbp), %eax
10,000,000    0    0          0         0         0          0    0    0    cltq
10,000,000    0    0 10,000,000         0         0          0    0    0    movsd   A(,%rax,8), %xmm0
10,000,000    0    0          0         0         0          0    0    0    mulsd   %xmm1, %xmm0
10,000,000    0    0          0         0         0 10,000,000    0    0    movsd   %xmm0, -16(%rbp)
10,000,000    0    0 10,000,000         0         0          0    0    0    addl    $1, -4(%rbp)
         .    .    .          .         .         .          .    .    .  .L2:
10,000,001    0    0 10,000,001         0         0          0    0    0    cmpl    $9999999, -4(%rbp)
10,000,001    0    0          0         0         0          0    0    0    jle .L3
         1    0    0          0         0         0          0    0    0    movl    $0, %eax
         1    0    0          1         0         0          0    0    0    popq    %rbp
         .    .    .          .         .         .          .    .    .    .cfi_def_cfa 7, 8
         1    0    0          1         0         0          0    0    0    ret
         .    .    .          .         .         .          .    .    .    .cfi_endproc
         .    .    .          .         .         .          .    .    .  .LFE0:
         .    .    .          .         .         .          .    .    .    .size   main, .-main
         .    .    .          .         .         .          .    .    .    .ident  "GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3"
         .    .    .          .         .         .          .    .    .    .section    .note.GNU-stack,"",@progbits

--------------------------------------------------------------------------------
 Ir I1mr ILmr  Dr D1mr DLmr  Dw D1mw DLmw 
--------------------------------------------------------------------------------
100    0    0 100  100  100 100    0    0  percentage of events annotated


3. 以下结果是 perf 的输出:

$ sudo perf stat -r 10 -e instructions -e cache-references -e cache-misses -e L1-dcache-loads -e L1-dcache-load-misses -e L1-dcache-stores -e L1-dcache-store-misses -e LLC-loads -e LLC-load-misses -e LLC-prefetches ./test

 Performance counter stats for './test' (10 runs):

   113,898,951 instructions              #    0.00  insns per cycle          ( +- 12.73% ) [17.36%]
        53,607 cache-references                                              ( +- 12.92% ) [29.23%]
         1,483 cache-misses              #    2.767 % of all cache refs      ( +- 26.66% ) [39.84%]
    48,612,823 L1-dcache-loads                                               ( +-  4.58% ) [50.45%]
        34,256 L1-dcache-load-misses     #    0.07% of all L1-dcache hits    ( +- 18.94% ) [54.38%]
    14,992,686 L1-dcache-stores                                              ( +-  4.90% ) [52.58%]
         1,980 L1-dcache-store-misses                                        ( +-  6.36% ) [61.83%]
         1,154 LLC-loads                                                     ( +- 61.14% ) [53.22%]
            18 LLC-load-misses           #    1.60% of all LL-cache hits     ( +- 16.26% ) [10.87%]
             0 LLC-prefetches                                               [ 0.00%]

   0.037949840 seconds time elapsed                                          ( +-  3.57% )


更多实验结果(2014.05.13):

jin@desktop:~/1_dev/99_test/OI$ sudo perf stat -r 10 -e instructions -e r53024e -e r53014e -e L1-dcache-loads -e L1-dcache-load-misses -e r500f0a -e r500109 ./test

 Performance counter stats for './test' (10 runs):

   116,464,390 instructions              #    0.00  insns per cycle          ( +-  2.67% ) [67.43%]
         5,994 r53024e  <-- L1D hardware prefetch misses                     ( +- 21.74% ) [70.92%]
     1,387,214 r53014e  <-- L1D hardware prefetch requests                   ( +-  2.37% ) [75.61%]
    61,667,802 L1-dcache-loads                                               ( +-  1.27% ) [78.12%]
        26,297 L1-dcache-load-misses     #    0.04% of all L1-dcache hits    ( +- 48.92% ) [43.24%]
             0 r500f0a  <-- LLC lines allocated                                 [56.71%]
        41,545 r500109  <-- Number of LLC read misses                        ( +-  6.16% ) [50.08%]

   0.037080925 seconds time elapsed     


在上面的结果中,“L1D 硬件预取请求”的数量似乎是 cachegrind 上的 D1 未命中(1,250,000)。


在我的结论中,如果内存访问“流模式”,则启用 L1D 预取功能。由于 LLC 缺失信息,我无法检查从内存中加载了多少字节。

我的结论正确吗?


编者注:
(1)根据 的输出cachegrind,OP 很可能使用了没有优化的 gcc 4.6.3。
(2) 中使用的一些原始事件perf stat仅在 Nehalem/Westmere 上得到官方支持,所以我认为这就是 OP 正在使用的微架构。
(3) 原始事件代码中最高有效字节(即第三字节)中设置的位被 忽略perf。(虽然不是第三个字节的所有位都被忽略。)因此事件实际上是 r024e、r014e、r0f0a 和 r0109。
(4) 事件 r0f0a 和 r0109 是非核心事件,但 OP 已将它们指定为核心事件,这是错误的,因为perf会将它们测量为核心事件。

4

1 回答 1

1

底线:您对预取的假设是正确的,但您的解决方法不是。

首先,正如 Carlo 所指出的,这个循环通常会被任何编译器优化。由于 perf 和 cachegrind 都显示 ~100M 指令确实退出,我猜你没有进行优化编译,这意味着行为不是很现实 - 例如,你的循环变量可能存储在内存中而不是寄存器中,添加无意义的内存访问和倾斜的缓存计数器。

现在,您的运行之间的区别在于 cachgrind 只是一个缓存模拟器,它不模拟预取,因此每次第一次访问一行都会按预期丢失。另一方面,如您所见,真正的 CPU 确实具有硬件预取,因此第一次从内存中获取每一行时,它是通过预取完成的(感谢简单的流模式),而不是由实际的需求负载完成。这就是为什么 perf 没有使用普通计数器计算这些访问的原因。

您可以看到,当启用预取计数器时,您会看到大致相同的 N/8 次预取(可能还有一些来自其他类型访问的额外预取)。

禁用预取器似乎是正确的事情,但是大多数 CPU 并没有提供太多的控制。您没有指定您使用的处理器类型,但如果它是 Intel 例如,您可以在此处看到只有 L2 预取由 BIOS 控制,而您的输出显示 L1 预取 - https://software.intel .com/en-us/articles/optimizing-application-performance-on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers

搜索您的 CPU 类型的手册以查看存在哪些 L1 预取器,并了解如何解决它们。通常一个简单的步幅(大于单个缓存行)应该足以欺骗他们,但如果这不起作用,您需要将访问模式更改为更加随机。您可以为此随机化一些索引排列。

于 2015-05-01T07:20:49.257 回答