85

如何使用多处理来解决令人尴尬的并行问题

令人尴尬的并行问题通常由三个基本部分组成:

  1. 读取输入数据(从文件、数据库、tcp 连接等)。
  2. 对输入数据运行计算,其中每个计算独立于任何其他计算
  3. 将计算结果写入(到文件、数据库、tcp 连接等)。

我们可以在两个维度上并行化程序:

  • 第 2 部分可以在多个内核上运行,因为每个计算都是独立的;处理顺序无关紧要。
  • 每个部分都可以独立运行。第 1 部分可以将数据放入输入队列,第 2 部分可以从输入队列中拉出数据并将结果放入输出队列,第 3 部分可以从输出队列中拉出结果并将其写出。

这似乎是并发编程中最基本的模式,但我仍然在尝试解决它时迷失了方向,所以让我们编写一个规范的示例来说明如何使用 multiprocessing 来完成

这是示例问题:给定一个以整数行作为输入的CSV 文件,计算它们的总和。将问题分成三个部分,它们都可以并行运行:

  1. 将输入文件处理为原始数据(整数列表/可迭代)
  2. 并行计算数据的总和
  3. 输出总和

下面是解决这三个任务的传统单进程绑定 Python 程序:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# basicsums.py
"""A program that reads integer values from a CSV file and writes out their
sums to another CSV file.
"""

import csv
import optparse
import sys

def make_cli_parser():
    """Make the command line interface parser."""
    usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV",
            __doc__,
            """
ARGUMENTS:
    INPUT_CSV: an input CSV file with rows of numbers
    OUTPUT_CSV: an output file that will contain the sums\
"""])
    cli_parser = optparse.OptionParser(usage)
    return cli_parser


def parse_input_csv(csvfile):
    """Parses the input CSV and yields tuples with the index of the row
    as the first element, and the integers of the row as the second
    element.

    The index is zero-index based.

    :Parameters:
    - `csvfile`: a `csv.reader` instance

    """
    for i, row in enumerate(csvfile):
        row = [int(entry) for entry in row]
        yield i, row


def sum_rows(rows):
    """Yields a tuple with the index of each input list of integers
    as the first element, and the sum of the list of integers as the
    second element.

    The index is zero-index based.

    :Parameters:
    - `rows`: an iterable of tuples, with the index of the original row
      as the first element, and a list of integers as the second element

    """
    for i, row in rows:
        yield i, sum(row)


def write_results(csvfile, results):
    """Writes a series of results to an outfile, where the first column
    is the index of the original row of data, and the second column is
    the result of the calculation.

    The index is zero-index based.

    :Parameters:
    - `csvfile`: a `csv.writer` instance to which to write results
    - `results`: an iterable of tuples, with the index (zero-based) of
      the original row as the first element, and the calculated result
      from that row as the second element

    """
    for result_row in results:
        csvfile.writerow(result_row)


def main(argv):
    cli_parser = make_cli_parser()
    opts, args = cli_parser.parse_args(argv)
    if len(args) != 2:
        cli_parser.error("Please provide an input file and output file.")
    infile = open(args[0])
    in_csvfile = csv.reader(infile)
    outfile = open(args[1], 'w')
    out_csvfile = csv.writer(outfile)
    # gets an iterable of rows that's not yet evaluated
    input_rows = parse_input_csv(in_csvfile)
    # sends the rows iterable to sum_rows() for results iterable, but
    # still not evaluated
    result_rows = sum_rows(input_rows)
    # finally evaluation takes place as a chain in write_results()
    write_results(out_csvfile, result_rows)
    infile.close()
    outfile.close()


if __name__ == '__main__':
    main(sys.argv[1:])

让我们使用这个程序并重写它以使用多处理来并行化上述三个部分。下面是这个新的并行程序的骨架,需要充实以解决注释中的部分:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# multiproc_sums.py
"""A program that reads integer values from a CSV file and writes out their
sums to another CSV file, using multiple processes if desired.
"""

import csv
import multiprocessing
import optparse
import sys

NUM_PROCS = multiprocessing.cpu_count()

def make_cli_parser():
    """Make the command line interface parser."""
    usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV",
            __doc__,
            """
ARGUMENTS:
    INPUT_CSV: an input CSV file with rows of numbers
    OUTPUT_CSV: an output file that will contain the sums\
"""])
    cli_parser = optparse.OptionParser(usage)
    cli_parser.add_option('-n', '--numprocs', type='int',
            default=NUM_PROCS,
            help="Number of processes to launch [DEFAULT: %default]")
    return cli_parser


def main(argv):
    cli_parser = make_cli_parser()
    opts, args = cli_parser.parse_args(argv)
    if len(args) != 2:
        cli_parser.error("Please provide an input file and output file.")
    infile = open(args[0])
    in_csvfile = csv.reader(infile)
    outfile = open(args[1], 'w')
    out_csvfile = csv.writer(outfile)

    # Parse the input file and add the parsed data to a queue for
    # processing, possibly chunking to decrease communication between
    # processes.

    # Process the parsed data as soon as any (chunks) appear on the
    # queue, using as many processes as allotted by the user
    # (opts.numprocs); place results on a queue for output.
    #
    # Terminate processes when the parser stops putting data in the
    # input queue.

    # Write the results to disk as soon as they appear on the output
    # queue.

    # Ensure all child processes have terminated.

    # Clean up files.
    infile.close()
    outfile.close()


if __name__ == '__main__':
    main(sys.argv[1:])

可以在 github 上找到这些代码,以及可以生成示例 CSV 文件以进行测试的另一段代码。

我将不胜感激您对并发专家如何解决此问题的任何见解。


以下是我在思考这个问题时遇到的一些问题。解决任何/所有问题的奖励积分:

  • 我应该有子进程来读取数据并将其放入队列中,还是主进程可以在读取所有输入之前不阻塞地执行此操作?
  • 同样,我应该有一个子进程来将结果从已处理队列中写出来,还是主进程可以这样做而不必等待所有结果?
  • 我应该使用进程池进行求和操作吗?
  • 假设我们不需要在数据进入时从输入和输出队列中抽出,而是可以等到所有输入都被解析并计算出所有结果(例如,因为我们知道所有输入和输出都将适合系统内存)。我们是否应该以任何方式更改算法(例如,不要在 I/O 的同时运行任何进程)?
4

5 回答 5

73

我的解决方案有一个额外的花里胡哨,以确保输出的顺序与输入的顺序相同。我使用 multiprocessing.queue 在进程之间发送数据,发送停止消息,以便每个进程都知道退出检查队列。我认为来源中的评论应该清楚地说明发生了什么,但如果不让我知道。

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# multiproc_sums.py
"""A program that reads integer values from a CSV file and writes out their
sums to another CSV file, using multiple processes if desired.
"""

import csv
import multiprocessing
import optparse
import sys

NUM_PROCS = multiprocessing.cpu_count()

def make_cli_parser():
    """Make the command line interface parser."""
    usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV",
            __doc__,
            """
ARGUMENTS:
    INPUT_CSV: an input CSV file with rows of numbers
    OUTPUT_CSV: an output file that will contain the sums\
"""])
    cli_parser = optparse.OptionParser(usage)
    cli_parser.add_option('-n', '--numprocs', type='int',
            default=NUM_PROCS,
            help="Number of processes to launch [DEFAULT: %default]")
    return cli_parser

class CSVWorker(object):
    def __init__(self, numprocs, infile, outfile):
        self.numprocs = numprocs
        self.infile = open(infile)
        self.outfile = outfile
        self.in_csvfile = csv.reader(self.infile)
        self.inq = multiprocessing.Queue()
        self.outq = multiprocessing.Queue()

        self.pin = multiprocessing.Process(target=self.parse_input_csv, args=())
        self.pout = multiprocessing.Process(target=self.write_output_csv, args=())
        self.ps = [ multiprocessing.Process(target=self.sum_row, args=())
                        for i in range(self.numprocs)]

        self.pin.start()
        self.pout.start()
        for p in self.ps:
            p.start()

        self.pin.join()
        i = 0
        for p in self.ps:
            p.join()
            print "Done", i
            i += 1

        self.pout.join()
        self.infile.close()

    def parse_input_csv(self):
            """Parses the input CSV and yields tuples with the index of the row
            as the first element, and the integers of the row as the second
            element.

            The index is zero-index based.

            The data is then sent over inqueue for the workers to do their
            thing.  At the end the input process sends a 'STOP' message for each
            worker.
            """
            for i, row in enumerate(self.in_csvfile):
                row = [ int(entry) for entry in row ]
                self.inq.put( (i, row) )

            for i in range(self.numprocs):
                self.inq.put("STOP")

    def sum_row(self):
        """
        Workers. Consume inq and produce answers on outq
        """
        tot = 0
        for i, row in iter(self.inq.get, "STOP"):
                self.outq.put( (i, sum(row)) )
        self.outq.put("STOP")

    def write_output_csv(self):
        """
        Open outgoing csv file then start reading outq for answers
        Since I chose to make sure output was synchronized to the input there
        is some extra goodies to do that.

        Obviously your input has the original row number so this is not
        required.
        """
        cur = 0
        stop = 0
        buffer = {}
        # For some reason csv.writer works badly across processes so open/close
        # and use it all in the same process or else you'll have the last
        # several rows missing
        outfile = open(self.outfile, "w")
        self.out_csvfile = csv.writer(outfile)

        #Keep running until we see numprocs STOP messages
        for works in range(self.numprocs):
            for i, val in iter(self.outq.get, "STOP"):
                # verify rows are in order, if not save in buffer
                if i != cur:
                    buffer[i] = val
                else:
                    #if yes are write it out and make sure no waiting rows exist
                    self.out_csvfile.writerow( [i, val] )
                    cur += 1
                    while cur in buffer:
                        self.out_csvfile.writerow([ cur, buffer[cur] ])
                        del buffer[cur]
                        cur += 1

        outfile.close()

def main(argv):
    cli_parser = make_cli_parser()
    opts, args = cli_parser.parse_args(argv)
    if len(args) != 2:
        cli_parser.error("Please provide an input file and output file.")

    c = CSVWorker(opts.numprocs, args[0], args[1])

if __name__ == '__main__':
    main(sys.argv[1:])
于 2010-03-02T16:16:29.283 回答
7

聚会迟到了……

joblib在多处理之上有一个层来帮助进行并行 for 循环。除了非常简单的语法外,它还为您提供了诸如懒惰调度作业和更好的错误报告等功能。

作为免责声明,我是 joblib 的原作者。

于 2014-01-15T08:13:10.277 回答
5

我意识到我参加聚会有点晚了,但我最近发现了GNU 并行,并想展示用它完成这个典型任务是多么容易。

cat input.csv | parallel ./sum.py --pipe > sums

这样的事情会做sum.py

#!/usr/bin/python

from sys import argv

if __name__ == '__main__':
    row = argv[-1]
    values = (int(value) for value in row.split(','))
    print row, ':', sum(values)

Parallel 将对中sum.py的每一行运行input.csv(当然是并行的),然后将结果输出到sums. 显然比multiprocessing麻烦好

于 2013-08-23T11:00:50.367 回答
4

老套。

p1.py

import csv
import pickle
import sys

with open( "someFile", "rb" ) as source:
    rdr = csv.reader( source )
    for line in eumerate( rdr ):
        pickle.dump( line, sys.stdout )

p2.py

import pickle
import sys

while True:
    try:
        i, row = pickle.load( sys.stdin )
    except EOFError:
        break
    pickle.dump( i, sum(row) )

p3.py

import pickle
import sys
while True:
    try:
        i, row = pickle.load( sys.stdin )
    except EOFError:
        break
    print i, row

这是多处理最终结构。

python p1.py | python p2.py | python p3.py

是的,外壳在操作系统级别将这些结合在一起。这对我来说似乎更简单,而且效果很好。

是的,使用 pickle(或 cPickle)会产生更多开销。然而,这种简化似乎值得付出努力。

如果您希望文件名成为 的参数p1.py,那很容易更改。

更重要的是,像下面这样的函数非常方便。

def get_stdin():
    while True:
        try:
            yield pickle.load( sys.stdin )
        except EOFError:
            return

这使您可以这样做:

for item in get_stdin():
     process item

这很简单,但它不容易让您运行多个 P2.py 副本。

你有两个问题:扇出和扇入。P1.py 必须以某种方式扇出多个 P2.py。P2.py 必须以某种方式将他们的结果合并到一个 P3.py 中。

老式的扇出方法是“推送”架构,非常有效。

从理论上讲,多个P2.py从一个公共队列中拉取是资源的最优分配。这通常是理想的,但它也是相当多的编程。编程真的有必要吗?或者循环处理是否足够好?

实际上,您会发现让 P1.py 在多个 P2.py 之间进行简单的“循环”处理可能非常好。您将 P1.py 配置为通过命名管道处理 P2.py 的n 个副本。P2.py 将分别从其相应的管道中读取。

如果一个 P2.py 获得了所有“最坏情况”的数据并远远落后怎么办?是的,循环赛并不完美。但它比只有一个 P2.py 要好,您可以通过简单的随机化来解决这种偏差。

从多个 P2.py 扇入到一个 P3.py 仍然有点复杂。在这一点上,老派的方法不再是有利的。P3.py 需要使用该select库从多个命名管道中读取以交错读取。

于 2010-03-01T21:55:50.367 回答
0

也可能在第 1 部分中引入一些并行性。像 CSV 这样简单的格式可能不是问题,但如果输入数据的处理明显慢于数据的读取,您可以读取更大的块,然后继续读取,直到找到“行分隔符”( CSV 情况下的换行符,但这又取决于读取的格式;如果格式足够复杂,则不起作用)。

这些块,每个可能包含多个条目,然后可以被转移到一组并行进程中,从队列中读取作业,在那里对它们进行解析和拆分,然后放置在队列中以进行第 2 阶段。

于 2010-03-10T16:39:09.467 回答