我正在尝试编写 Cython 代码以比 sklearn 的内置代码更快地将密集特征矩阵、目标向量对转储为 libsvm 格式。我收到一个编译错误,抱怨将目标向量(一个 numpy 整数数组)传递给相关的 c 函数时出现类型问题。
这是代码:
import numpy as np
cimport numpy as np
cimport cython
cdef extern from "cdump.h":
int filedump( double features[], int numexemplars, int numfeats, int target[], char* outfname)
@cython.boundscheck(False)
@cython.wraparound(False)
def fastdumpdense_libsvmformat(np.ndarray[np.double_t,ndim=2] X, y, outfname):
if X.shape[0] != len(y):
raise ValueError("X and y need to have the same number of points")
cdef int numexemplars = X.shape[0]
cdef int numfeats = X.shape[1]
cdef bytes py_bytes = outfname.encode()
cdef char* outfnamestr = py_bytes
cdef np.ndarray[np.double_t, ndim=2, mode="c"] X_c
cdef np.ndarray[np.int_t, ndim=1, mode="c"] y_c
X_c = np.ascontiguousarray(X, dtype=np.double)
y_c = np.ascontiguousarray(y, dtype=np.int)
retval = filedump( &X_c[0,0], numexemplars, numfeats, &y_c[0], outfnamestr)
return retval
当我尝试使用 distutils 编译此代码时,出现错误
cythoning fastdump_svm.pyx to fastdump_svm.cpp
Error compiling Cython file:
------------------------------------------------------------ ...
cdef np.ndarray[np.double_t, ndim=2, mode="c"] X_c
cdef np.ndarray[np.int_t, ndim=1, mode="c"] y_c
X_c = np.ascontiguousarray(X, dtype=np.double)
y_c = np.ascontiguousarray(y, dtype=np.int)
retval = filedump( &X_c[0,0], numexemplars, numfeats, &y_c[0], outfnamestr)
^
------------------------------------------------------------
fastdump_svm.pyx:24:58: Cannot assign type 'int_t *' to 'int *'
知道如何解决此错误吗?我最初遵循传递 y_c.data 的范式,这很有效,但这显然不是推荐的方式。