7

我无法使用 R 和基于这篇文章的指导对标准错误进行聚类。cl 函数返回错误:

Error in tapply(x, cluster1, sum) : arguments must have same length

阅读后,tapply我仍然不确定为什么我的集群参数长度错误,以及导致此错误的原因。

这是我正在使用的数据集的链接。

https://www.dropbox.com/s/y2od7um9pp4vn0s/Ec%201820%20-%20DD%20Data%20with%20Controls.csv

这是R代码:

# read in data
charter<-read.csv(file.choose())
View(charter)
colnames(charter)

# standardize NAEP scores
charter$naep.standardized <- (charter$naep - mean(charter$naep, na.rm=T))/sd(charter$naep, na.rm=T)

# change NAs in year.passed column to 2014
charter$year.passed[is.na(charter$year.passed)]<-2014

# Add column with indicator for in treatment (passed legislation)
charter$treatment<-ifelse(charter$year.passed<=charter$year,1,0)

# fit model
charter.model<-lm(naep ~ factor(year) + factor(state) + treatment, data = charter)
summary(charter.model)
# account for clustered standard errors by state
cl(dat=charter, fm=charter.model, cluster=charter$state)

# accounting for controls
charter.model.controls<-lm(naep~factor)

# clustered standard errors
# ---------

# function that calculates clustered standard errors
# source: http://thetarzan.wordpress.com/2011/06/11/clustered-standard-errors-in-r/
cl   <- function(dat, fm, cluster){
  require(sandwich, quietly = TRUE)
  require(lmtest, quietly = TRUE)
  M <- length(unique(cluster))
  N <- length(cluster)
  K <- fm$rank
  dfc <- (M/(M-1))*((N-1)/(N-K))
  print(K)
  uj  <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum));
  vcovCL <- dfc*sandwich(fm, meat=crossprod(uj)/N)
  coeftest(fm, vcovCL) 
}

# calculate clustered standard errors 
cl(charter, charter.model, charter$state)

该函数的内部工作原理有点超出我的想象。

4

2 回答 2

5

执行代码时,请注意线性模型中缺少观察结果:

> summary(charter.model)

Call:
lm(formula = naep ~ factor(year) + factor(state) + treatment, 
    data = charter)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.2420  -1.6740  -0.2024   1.8345  12.3580 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 250.4983     1.2115 206.767  < 2e-16 ***
factor(year)1992              3.7970     0.7198   5.275 2.17e-07 ***
factor(year)1996              7.0436     0.8607   8.183 3.64e-15 ***

[..]

Residual standard error: 3.128 on 404 degrees of freedom
  (759 observations deleted due to missingness)
Multiple R-squared:  0.9337,    Adjusted R-squared:  0.9239 
F-statistic: 94.85 on 60 and 404 DF,  p-value: < 2.2e-16

这就是导致Error in tapply(x, cluster1, sum) : arguments must have same length您看到的错误消息的原因。

cl(dat=charter, fm=charter.model, cluster=charter$state)集群变量charter$state中,应该具有与回归估计中有效使用的观察数完全相同的长度(由于 NA 与原始数据框中的行数不同)。


要解决此问题,您可以执行以下操作。

  1. 首先,您使用的是 Arai 函数 ( cl) 的旧版本(请参阅R 中的 Fama-MacBeth 和 Cluster-Robust (by Firm and Time) Standard Errors 以获取对旧版本或新版本的引用,后者被称为clx)。

  2. 其次,我认为 Arai 对这个函数的原始方法有点复杂,并没有真正vcov*遵循sandwich. 这就是为什么我带来了一个稍微修改过的clx. 我使代码更具可读性,并且界面更像您对sandwich vcov*函数的期望:

    vcovCL <- function(x, cluster.by, type="sss", dfcw=1){
        # R-codes (www.r-project.org) for computing
        # clustered-standard errors. Mahmood Arai, Jan 26, 2008.
    
        # The arguments of the function are:
        # fitted model, cluster1 and cluster2
        # You need to install libraries `sandwich' and `lmtest'
    
        # reweighting the var-cov matrix for the within model
        require(sandwich)
        cluster <- cluster.by
        M <- length(unique(cluster))   
        N <- length(cluster)
        stopifnot(N == length(x$residuals))
        K <- x$rank
        ##only Stata small-sample correction supported right now 
        ##see plm >= 1.5-4
        stopifnot(type=="sss")  
        if(type=="sss"){
            dfc <- (M/(M-1))*((N-1)/(N-K))
        }
        uj  <- apply(estfun(x), 2, function(y) tapply(y, cluster, sum))
        mycov <- dfc * sandwich(x, meat=crossprod(uj)/N) * dfcw
        return(mycov)
    }
    

如果您在数据上尝试此功能,您会发现它捕获了这个特定问题:

> coeftest(charter.model, vcov=function(x) vcovCL(x, charter$state))
 Error: N == length(x$residuals) is not TRUE

为避免此问题,您可以按以下步骤操作:

> charter.x <- na.omit(charter[ , c("state", 
                                  all.vars(formula(charter.model)))])
> coeftest(charter.model, vcov=function(x) vcovCL(x, charter.x$state)) 

t test of coefficients:

                               Estimate  Std. Error     t value  Pr(>|t|)    
(Intercept)                  2.5050e+02  9.3781e-01  2.6711e+02 < 2.2e-16 ***
factor(year)1992             3.7970e+00  5.6019e-01  6.7780e+00 4.330e-11 ***
factor(year)1996             7.0436e+00  8.8574e-01  7.9522e+00 1.856e-14 ***
factor(year)2000             8.4313e+00  1.0906e+00  7.7311e+00 8.560e-14 ***
factor(year)2003             1.2392e+01  1.1670e+00  1.0619e+01 < 2.2e-16 ***
factor(year)2005             1.3490e+01  1.1747e+00  1.1484e+01 < 2.2e-16 ***
factor(year)2007             1.6334e+01  1.2469e+00  1.3100e+01 < 2.2e-16 ***
factor(year)2009             1.8118e+01  1.2556e+00  1.4430e+01 < 2.2e-16 ***
factor(year)2011             1.9110e+01  1.3459e+00  1.4199e+01 < 2.2e-16 ***
factor(year)2013             1.9301e+01  1.4896e+00  1.2957e+01 < 2.2e-16 ***
factor(state)Alaska          1.4178e+01  8.7686e-01  1.6169e+01 < 2.2e-16 ***
factor(state)Arizona         8.6313e+00  8.1439e-01  1.0598e+01 < 2.2e-16 ***
factor(state)Arkansas        4.3313e+00  8.1439e-01  5.3185e+00 1.736e-07 ***
factor(state)California      3.1103e+00  9.1619e-01  3.3948e+00 0.0007549 ***
factor(state)Colorado        1.7939e+01  7.9736e-01  2.2498e+01 < 2.2e-16 ***
factor(state)Connecticut     1.8031e+01  8.1439e-01  2.2141e+01 < 2.2e-16 ***
factor(state)D.C.           -1.8369e+01  8.1439e-01 -2.2555e+01 < 2.2e-16 ***
factor(state)Delaware        1.2050e+01  7.9736e-01  1.5113e+01 < 2.2e-16 ***
factor(state)Florida         7.3838e+00  7.9736e-01  9.2602e+00 < 2.2e-16 ***
factor(state)Georgia         6.4313e+00  8.1439e-01  7.8971e+00 2.724e-14 ***
factor(state)Hawaii          3.3313e+00  8.1439e-01  4.0906e+00 5.196e-05 ***
factor(state)Idaho           1.7118e+01  7.8321e-01  2.1857e+01 < 2.2e-16 ***
factor(state)Illinois        1.2670e+01  8.2224e-01  1.5409e+01 < 2.2e-16 ***
factor(state)Indianna        1.7174e+01  6.1079e-01  2.8117e+01 < 2.2e-16 ***
factor(state)Iowa            2.0074e+01  6.8460e-01  2.9322e+01 < 2.2e-16 ***
factor(state)Kansas          2.0123e+01  8.6796e-01  2.3184e+01 < 2.2e-16 ***
factor(state)Kentucky        1.0200e+01  4.1999e-14  2.4287e+14 < 2.2e-16 ***
factor(state)Louisiana      -1.6866e-01  8.1439e-01 -2.0710e-01 0.8360322    
factor(state)Maine           2.0231e+01  1.7564e-01  1.1518e+02 < 2.2e-16 ***
factor(state)Maryland        1.4274e+01  6.1079e-01  2.3369e+01 < 2.2e-16 ***
factor(state)Massachusetts   2.4868e+01  8.3960e-01  2.9619e+01 < 2.2e-16 ***
factor(state)Michigan        1.2031e+01  8.1439e-01  1.4773e+01 < 2.2e-16 ***
factor(state)Minnesota       2.5110e+01  9.1619e-01  2.7407e+01 < 2.2e-16 ***
factor(state)Mississippi    -3.5470e+00  1.7564e-01 -2.0195e+01 < 2.2e-16 ***
factor(state)Missouri        1.3447e+01  7.2706e-01  1.8495e+01 < 2.2e-16 ***
factor(state)Montana         2.2512e+01  8.4814e-01  2.6543e+01 < 2.2e-16 ***
factor(state)Nebraska        1.9600e+01  4.3105e-14  4.5471e+14 < 2.2e-16 ***
factor(state)Nevada          4.9800e+00  8.6796e-01  5.7375e+00 1.887e-08 ***
factor(state)New Hampshire   2.2026e+01  7.6338e-01  2.8853e+01 < 2.2e-16 ***
factor(state)New Jersey      2.0651e+01  7.6338e-01  2.7052e+01 < 2.2e-16 ***
factor(state)New Mexico      1.5313e+00  8.1439e-01  1.8803e+00 0.0607809 .  
factor(state)New York        1.2152e+01  7.1259e-01  1.7054e+01 < 2.2e-16 ***
factor(state)North Carolina  1.2231e+01  8.1439e-01  1.5019e+01 < 2.2e-16 ***
factor(state)North Dakota    2.4278e+01  1.0420e-01  2.3299e+02 < 2.2e-16 ***
factor(state)Ohio            1.7118e+01  7.8321e-01  2.1857e+01 < 2.2e-16 ***
factor(state)Oklahoma        8.4518e+00  7.8321e-01  1.0791e+01 < 2.2e-16 ***
factor(state)Oregon          1.6535e+01  7.3538e-01  2.2486e+01 < 2.2e-16 ***
factor(state)Pennsylvania    1.6651e+01  7.6338e-01  2.1812e+01 < 2.2e-16 ***
factor(state)Rhode Island    9.5313e+00  8.1439e-01  1.1704e+01 < 2.2e-16 ***
factor(state)South Carolina  9.5346e+00  8.3960e-01  1.1356e+01 < 2.2e-16 ***
factor(state)South Dakota    2.1211e+01  3.5103e-01  6.0425e+01 < 2.2e-16 ***
factor(state)Tennessee       4.9148e+00  6.1473e-01  7.9951e+00 1.375e-14 ***
factor(state)Texas           1.4231e+01  8.1439e-01  1.7475e+01 < 2.2e-16 ***
factor(state)Utah            1.5114e+01  7.2706e-01  2.0787e+01 < 2.2e-16 ***
factor(state)Vermont         2.3474e+01  2.0299e-01  1.1564e+02 < 2.2e-16 ***
factor(state)Virginia        1.6252e+01  7.1259e-01  2.2807e+01 < 2.2e-16 ***
factor(state)Washington      1.9073e+01  1.8183e-01  1.0489e+02 < 2.2e-16 ***
factor(state)West Virginia   5.0000e+00  4.2022e-14  1.1899e+14 < 2.2e-16 ***
factor(state)Wisconsin       1.9994e+01  8.2447e-01  2.4251e+01 < 2.2e-16 ***
factor(state)Wyoming         1.8231e+01  8.1439e-01  2.2386e+01 < 2.2e-16 ***
treatment                    1.2108e+00  1.0180e+00  1.1894e+00 0.2349682    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

这不是很好,但可以完成工作。现在cl也可以正常工作并产生与上述相同的结果:

cl(dat=charter, fm=charter.model, cluster=charter.x$state)

解决此问题的更好方法是使用该multiwayvcov软件包。根据包的网站,这是对 Arai 代码的改进:

由于缺失而丢失的观察结果的透明处理

将 Petersen 数据与模拟的 NA 和 一起使用cluster.vcov()

library("lmtest")
library("multiwayvcov")

data(petersen)
set.seed(123)
petersen[ sample(1:5000, 15), 3] <- NA

m1 <- lm(y ~ x, data = petersen)
summary(m1)
## 
## Call:
## lm(formula = y ~ x, data = petersen)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.759 -1.371 -0.018  1.340  8.680 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.02793    0.02842   0.983    0.326    
## x            1.03635    0.02865  36.175   <2e-16 ***
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## 
## Residual standard error: 2.007 on 4983 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.208,  Adjusted R-squared:  0.2078 
## F-statistic:  1309 on 1 and 4983 DF,  p-value: < 2.2e-16

coeftest(m1, vcov=function(x) cluster.vcov(x, petersen$firmid))
## 
## t test of coefficients:
## 
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.027932   0.067198  0.4157   0.6777    
## x           1.036354   0.050700 20.4407   <2e-16 ***
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

有关使用该plm包的不同方法,请参阅:

于 2014-10-01T14:25:44.040 回答
-1

对于单向集群,包中的robcov命令{rms}非常有效。阅读此内容以获取更多信息 http://www.inside-r.org/packages/cran/rms/docs/robcov

于 2014-10-08T15:20:31.213 回答