原帖
我需要制作几个不同大小的子图。
我有大小(xy)的模拟区域,35x6µm
我39x2µm
想将它们绘制在一个图中。所有子图都相同( x 轴上x-ticklabels
每个都有一条网格线)。5µm
当我将子图绘制成一个图形时,x 面积较小的图形会被拉伸,以便x-figuresize
完全使用。因此,x-gridlines 不再匹配在一起。
如何实现子图不再拉伸并在左侧对齐?
编辑:这是一些代码:
size=array([[3983,229],[3933,350],[3854,454],[3750,533],[3500,600]], dtype=np.float)
resolution=array([[1024,256],[1024,320],[1024,448],[1024,512],[1024,640]], dtype=np.float)
aspect_ratios=(resolution[:,0]/resolution[:,1])*(size[:,1]/size[:,0])
number_of_graphs=len(data)
fig, ax=plt.subplots(nrows=number_of_graphs, sharex=xshare)
fig.set_size_inches(12,figheight)
for i in range(number_of_graphs):
temp=np.rot90(np.loadtxt(path+'/'+data[i]))
img=ax[i].imshow(temp,
interpolation="none",
cmap=mapping,
norm=specific_norm,
aspect=aspect_ratios[i]
)
ax[i].set_adjustable('box-forced')
#Here I have to set some ticks and labels....
ax[i].xaxis.set_ticks(np.arange(0,int(size[i,0]),stepwidth_width)*resolution[i,0]/size[i,0])
ax[i].set_xticklabels((np.arange(0, int(size[i,0]), stepwidth_width)))
ax[i].yaxis.set_ticks(np.arange(0,int(size[i,1]),stepwidth_height)*resolution[i,1]/size[i,1])
ax[i].set_yticklabels((np.arange(0, int(size[i,1]), stepwidth_height)))
ax[i].set_title(str(mag[i]))
grid(True)
savefig(path+'/'+name+'all.pdf', bbox_inches='tight', pad_inches=0.05) #saves graph
以下是一些示例: 如果我在 for 循环中绘制不同的矩阵,iPhython 会生成一个几乎是我想要的输出。每个子图之间的 y 距离是恒定的,并且每个图形的大小都是正确的。您可以看到,x 标签彼此匹配:
当我使用子图在一个图中绘制矩阵时,情况并非如此:x-ticks 不适合在一起,并且每个子图在画布上都有相同的大小(这意味着,对于薄子图,有更多的空白保留在画布上...)。
我只是想使用子图将 iPython 的第一个结果放在一个输出文件中。
使用 GridSpec
在社区告诉我使用 GridSpec 直接确定子图的大小后,我编写了一个自动绘图代码:
size=array([[3983,229],[3933,350],[3854,454],[3750,533],[3500,600]], dtype=np.float)
#total size of the figure
total_height=int(sum(size[:,1]))
total_width=int(size.max())
#determines steps of ticks
stepwidth_width=500
stepwidth_height=200
fig, ax=plt.subplots(nrows=len(size))
fig.set_size_inches(size.max()/300., total_height/200)
gs = GridSpec(total_height, total_width)
gs.update(left=0, right=0.91, hspace=0.2)
height=0
for i in range (len(size)):
ax[i] = plt.subplot(gs[int(height):int(height+size[i,1]), 0:int(size[i,0])])
temp=np.rot90(np.loadtxt(path+'/'+FFTs[i]))
img=ax[i].imshow(temp,
interpolation="none",
vmin=-100,
vmax=+100,
aspect=aspect_ratios[i],
)
#Some rescaling
ax[i].xaxis.set_ticks(np.arange(0,int(size[i,0]),stepwidth_width)*resolution[i,0]/size[i,0])
ax[i].set_xticklabels((np.arange(0, int(size[i,0]), stepwidth_width)))
ax[i].yaxis.set_ticks(np.arange(0,int(size[i,1]),stepwidth_height)*resolution[i,1]/size[i,1])
ax[i].set_yticklabels((np.arange(0, int(size[i,1]), stepwidth_height)))
ax[i].axvline(antenna[i]) #at the antenna position a vertical line is plotted
grid(True)
#colorbar
cbaxes = fig.add_axes([0.93, 0.2, 0.01, 0.6]) #[left, bottom, width, height]
cbar = plt.colorbar(img, cax = cbaxes, orientation='vertical')
tick_locator = ticker.MaxNLocator(nbins=3)
cbar.locator = tick_locator
cbar.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator())
cbar.set_label('Intensity',
#fontsize=12
)
cbar.update_ticks()
height=height+size[i,1]
plt.show()
结果是这样的…… 你有什么想法吗?