我之前遇到过这个问题已经解决了,但我觉得由于我的新问题的性质与成功编译无关,而是与代码的实际逻辑有关,因此可以接受创建一个新主题。到目前为止,这是我的代码:
#include "assign4.h"
#include <iostream>
using namespace std;
int main(int argc, char * argv[]){
solution s;
double root;
cout << "Enter interval endpoints: ";
cin >> s.xLeft >> s.xRight;
cout << "Enter tolerance: ";
cin >> s.epsilon;
root = s.bisect (s.xLeft, s.xRight, s.epsilon, &solution::f, s.error);
if (!(s.error))
cout << "Root found at " << root << "\nValue of f(x) at root is: " << s.f(root) << "\n";
else {
cout << "The solution of a quadratic equation with coefficients: " << endl;
// cout << "a = " << a << ", b = " << b << ", c = " << c << endl;
cout << "has not been found." << endl;
}
return 0;
}
///////////////////////////////////////// ///////////////////////////////////////// /////////////////////////////////////
#include "assign4.h"
#include <iostream>
#include <math.h>
using namespace std;
double solution::bisect (double xLeft, double xRight, double epsilon, double (solution::*f)(double), bool& error) {
double xMid;
double fLeft, fRight;
double fMid;
fLeft = (this->*f)(xLeft);
fRight = (this->*f)(xRight);
error = (fLeft * fRight) < 0;
if (error)
return -999.0;
for (double i = 0; i < 20; i++) {
xMid = (xLeft + (xLeft + 1.0)) / 2.0;
fMid = (this->*f)(xMid);
if (fLeft * fMid > 0.0) {
xLeft = xMid + 0.5;
xRight = xLeft + 1.0;
fLeft = fMid;
}
else if (fLeft * fMid < 0.0){
xRight = xMid;
fRight = fMid;
}
else {
return xMid;
}
cout << "New Interval is [" << xLeft << ", " << xRight << "]" << endl;
}
return (xLeft + xRight) / 2.0;
}
double solution::f (double x) {
return ((1 * pow(x,2.0)) + (5 * x) + 2);
}
///////////////////////////////////////// ///////////////////////////////////////// /////////////////////////////////////
#ifndef ASSIGN4_H
#define ASSIGN4_H
class solution {
public:
double xLeft, xRight;
double epsilon;
bool error;
double bisect(double, double, double, double (solution::*f)(double), bool&);
double f(double);
};
#endif // ASSIGN4_H
///////////////////////////////////////// ///////////////////////////////////////// /////////////////////////////////////
我完成这项任务的目标是找到存在的任何根源。我的问题是,我发现的每个二等分示例都只讨论如何一次找到一个根。我要使用的区间是 [-10.0, 10.0] ,最终我将接收通过封装在结构中的数组传递的方程的系数,但现在我已经对系数进行了硬编码。
所以我的问题是我目前可以得到我硬编码的方程的第一个根的 0.2 (x^2 + 5x + 2) 但我不确定如何越过那个根并继续寻找另一个根直到我的间隔结束。我也不确定如何准确地击中根源而不是稍微偏离。
为文字墙道歉,任何帮助表示赞赏!:)