7

这个问题涉及从具有不同样本大小和概率的多项分布中进行有效抽样。下面我描述了我使用的方法,但想知道是否可以通过一些智能矢量化来改进它。

我正在模拟生物体在多个种群中的扩散。人口中的个体以概率j分散到人口中。给定种群 1 的初始丰度为 10,以及分别扩散到种群 1、2 和 3 的概率,我们可以用 模拟扩散过程:ip[i, j]c(0.1, 0.3, 0.6)rmultinom

set.seed(1)
rmultinom(1, 10, c(0.1, 0.3, 0.6))

#      [,1]
# [1,]    0
# [2,]    3
# [3,]    7

我们可以将其扩展到考虑n源人群:

set.seed(1)
n <- 3
p <- replicate(n, diff(c(0, sort(runif(n-1)), 1)))
X <- sample(100, n)

上面,p是从一个人口(列)移动到另一个人口(行)的概率矩阵,X是初始人口规模的向量。现在可以使用以下方法模拟分散在每对种群(以及留在原地的个体)的个体数量:

sapply(seq_len(ncol(p)), function(i) {
  rmultinom(1, X[i], p[, i])  
})

#      [,1] [,2] [,3]
# [1,]   19   42   11
# [2,]    8   18   43
# [3,]   68    6    8

i其中第 th 行第 th 列元素的值是从一个人口移动到另一个人口j的个体数量。这个矩阵的 给出了新的人口规模。jirowSums

我想重复多次,使用恒定的概率矩阵,但具有不同的(预定义的)初始丰度。下面的小例子实现了这一点,但对于较大的问题效率低下。得到的矩阵给出了 5 个模拟中每个种群中三个种群中每个种群的扩散后丰度,其中种群具有不同的初始丰度。

X <- matrix(sample(100, n*5, replace=TRUE), nrow=n)

apply(sapply(apply(X, 2, function(x) {
  lapply(seq_len(ncol(p)), function(i) {
    rmultinom(1, x[i], p[, i])  
  })
}), function(x) do.call(cbind, x), simplify='array'), 3, rowSums)

#      [,1] [,2] [,3] [,4] [,5]
# [1,]   79   67   45   28   74
# [2,]   92   99   40   19   52
# [3,]   51   45   16   21   35

有没有办法更好地矢量化这个问题?

4

3 回答 3

7

这是多项式的 RcppGSL 实现。但是,它需要您独立安装gsl....这可能不是很实用。

// [[Rcpp::depends(RcppGSL)]]

#include <RcppGSL.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <unistd.h>            // getpid

Rcpp::IntegerVector rmn(unsigned int N, Rcpp::NumericVector p, gsl_rng* r){

    size_t K = p.size();

    Rcpp::IntegerVector x(K);
    gsl_ran_multinomial(r, K, N, p.begin(), (unsigned int *) x.begin());
    return x;             // return results vector
}

Rcpp::IntegerVector gsl_mmm_1(Rcpp::IntegerVector N, Rcpp::NumericMatrix P, gsl_rng* r){
    size_t K = N.size();
    int i;
    Rcpp::IntegerVector x(K);
    for(i=0; i<K; i++){
        x += rmn(N[i], P(Rcpp::_, i), r);
    }
    return x;
}

// [[Rcpp::export]]
Rcpp::IntegerMatrix gsl_mmm(Rcpp::IntegerMatrix X_, Rcpp::NumericMatrix P){
    int j;
    gsl_rng * r = gsl_rng_alloc (gsl_rng_mt19937);
    long seed = rand()/(((double)RAND_MAX + 1)/10000000) * getpid();
    gsl_rng_set (r, seed);
    Rcpp::IntegerMatrix X(X_.nrow(), X_.ncol());
    for(j=0; j<X.ncol(); j++){
        X(Rcpp::_, j) = gsl_mmm_1(X_(Rcpp::_,j), P, r);
    }
    gsl_rng_free (r);
    return X;
}

我还将它与纯 R 实现和 jbaums 的版本进行了比较

library(Rcpp)
library(microbenchmark)
sourceCpp("gsl.cpp")

P = matrix(c(c(0.1,0.2,0.7),c(0.3,0.3,0.4),c(0.5,0.3,0.2)),nc=3)
X = matrix(c(c(30,40,30),c(20,40,40)), nc=2)

mmm = function(X, P){
    n = ncol(X)
    p = nrow(X)
    Reduce("+", lapply(1:p, function(j) {
        Y = matrix(0,p,n)
        for(i in 1:n) Y[,i] = rmultinom(1, X[j,i], P[,j])
        Y
    }))
}

jbaums = function(X,P){
    apply(sapply(apply(X, 2, function(x) {
      lapply(seq_len(ncol(P)), function(i) {
        rmultinom(1, x[i], P[, i])
      })
    }), function(x) do.call(cbind, x), simplify='array'), nrow(X), rowSums)
}
microbenchmark(jbaums(X,P), mmm(X,P), gsl_mmm(X, P))

这就是结果

> microbenchmark(jbaums(X,P), mmm(X,P), gsl_mmm(X, P))
Unit: microseconds
          expr     min       lq  median       uq     max neval
  jbaums(X, P) 165.832 172.8420 179.185 187.2810 339.280   100
     mmm(X, P)  60.071  63.5955  67.437  71.5775  92.963   100
 gsl_mmm(X, P)  10.529  11.8800  13.671  14.6220  40.857   100

gsl 版本比我的纯 R 版本快大约 6 倍。

于 2014-04-16T05:24:47.273 回答
1

例如:

# make the example in Rcpp you mention:
library(Rcpp)
library(inline)
src <- 'Environment stats("package:stats");
Function rmultinom = stats["rmultinom"];
NumericVector some_p(1000, 1.0/1000);
return(rmultinom(1,1, some_p));'

fx <- rcpp(signature(), body=src)

# now compare the two
library(rbenchmark)
benchmark(fx(),rmultinom(1,1,c(1000,1/1000)),replications=10000)

#                            test replications elapsed relative user.self sys.self user.child sys.child
#    1                       fx()        10000   1.126   13.901     1.128        0          0         0
#    2 rmultinom(1, 1, c(1/1000))        10000   0.081    1.000     0.080        0          0         0
于 2014-04-16T03:04:30.693 回答
1

我发现该BH软件包将boost库带到了桌面上。这启用了以下功能,它产生与@RandyLai 相同的输出gsl_mmm以及我上面问题中的代码。(我相信启用 c++11 支持应该random可以在没有. 的情况下使用BH。)

// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

#include <boost/random.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/discrete_distribution.hpp>

using namespace Rcpp;

typedef boost::mt19937 RNGType;
RNGType rng(123);


NumericVector rowSumsC(IntegerMatrix x) {
  int nrow = x.nrow(), ncol = x.ncol();
  IntegerVector out(nrow);

  for (int i = 0; i < nrow; i++) {
    double total = 0;
    for (int j = 0; j < ncol; j++) {
      total += x(i, j);
    }
    out[i] = total;
  }
  return wrap(out);
}

// [[Rcpp::export]]
IntegerMatrix rmm(IntegerMatrix X, NumericMatrix P) {
  int niter = X.ncol(), nx = X.nrow();
  IntegerMatrix out(nx, niter);
  for (int j = 0; j < niter; j++) {
    IntegerMatrix tmp(nx, nx);
    for (int i = 0; i < nx; i++) {
      for (int n = 0; n < X(i, j); n++) {
        boost::random::discrete_distribution<> dist(P(_, i));
        tmp(dist(rng), i)++;
      }
    }
    out(_, j) = rowSumsC(tmp);
  }
  return out;
}

rowSumsC由@hadley 提供,这里

但是,在我的机器上,这比 Randy 的要慢得多gsl_mmm,并且在有很多试验时确实比我的 R 版本慢。我怀疑这是由于编码效率低下,但 boostdiscrete_distribution还单独执行每个多项试验,而这个过程在使用gsl. 我是 C++ 新手,所以不确定这是否可以提高效率。

P <- matrix(c(c(0.1, 0.2, 0.7), c(0.3, 0.3, 0.4), c(0.5, 0.3, 0.2)), nc=3)
X <- matrix(c(c(30, 40, 30), c(20, 40, 40)), nc=2)
library(BH)
microbenchmark(jbaums(X, P), rmm(X, P))

# Unit: microseconds
#          expr     min       lq  median       uq     max neval
#  jbaums(X, P) 124.988 129.5065 131.464 133.8735 348.763   100
#     rmm(X, P)  59.031  60.0850  62.043  62.6450 117.459   100
于 2014-04-21T22:10:08.420 回答