我试图编写一个装饰器函数,它包装一个asyncio.coroutine
并返回完成所花费的时间。下面的配方包含按我预期工作的代码。我唯一的问题是,尽管使用了@functools.wraps
. 如何保留原有协程的名称?我检查了来源asyncio.
import asyncio
import functools
import random
import time
MULTIPLIER = 5
def time_resulted(coro):
@functools.wraps(coro)
@asyncio.coroutine
def wrapper(*args, **kargs):
time_before = time.time()
result = yield from coro(*args, **kargs)
if result is not None:
raise TypeError('time resulted coroutine can '
'only return None')
return time_before, time.time()
print('= wrapper.__name__: {!r} ='.format(wrapper.__name__))
return wrapper
@time_resulted
@asyncio.coroutine
def random_sleep():
sleep_time = random.random() * MULTIPLIER
print('{} -> {}'.format(time.time(), sleep_time))
yield from asyncio.sleep(sleep_time)
if __name__ == '__main__':
loop = asyncio.get_event_loop()
tasks = [asyncio.Task(random_sleep()) for i in range(5)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
for task in tasks:
print(task, task.result()[1] - task.result()[0])
print('= random_sleep.__name__: {!r} ='.format(
random_sleep.__name__))
print('= random_sleep().__name__: {!r} ='.format(
random_sleep().__name__))
结果:
= wrapper.__name__: 'random_sleep' =
1397226479.00875 -> 4.261069174838891
1397226479.00875 -> 0.6596335046471768
1397226479.00875 -> 3.83421163259601
1397226479.00875 -> 2.5514027672929713
1397226479.00875 -> 4.497471439365472
Task(<wrapper>)<result=(1397226479.00875, 1397226483.274884)> 4.266134023666382
Task(<wrapper>)<result=(1397226479.00875, 1397226479.6697)> 0.6609499454498291
Task(<wrapper>)<result=(1397226479.00875, 1397226482.844265)> 3.835515022277832
Task(<wrapper>)<result=(1397226479.00875, 1397226481.562422)> 2.5536720752716064
Task(<wrapper>)<result=(1397226479.00875, 1397226483.51523)> 4.506479978561401
= random_sleep.__name__: 'random_sleep' =
= random_sleep().__name__: 'wrapper' =
如您所见random_sleep()
,返回一个具有不同名称的生成器对象。我想保留装饰协程的名称。我不知道这个问题是否是特定的asyncio.coroutines
。我还尝试了具有不同装饰器命令的代码,但结果都相同。如果我发表评论@functools.wraps(coro)
,那么甚至random_sleep.__name__
会wrapper
像我预期的那样。
编辑:我已将此问题发布到 Python 问题跟踪器,并收到了 R. David Murray 的以下回答:“我认为这是一个更普遍的需要改进‘包装’的具体案例,这在 python-dev 上讨论过很久以前。”