我正在尝试探索 Scikit DBSCAN。有件事我想知道。我怎样才能知道每个集群中的点。
此代码是scipy 网站中的示例:
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
X = StandardScaler().fit_transform(X)
##############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples = db.core_sample_indices_
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
##############################################################################
#Modification I am doing
print labels
print labels[0]
unique_labels = set(labels)
for k in unique_labels:
class_members = [index[0] for index in np.argwhere(labels == k)]
#cluster_core_samples = [index for index in core_samples if labels[index] == k]
print class_members[0]
for index in class_members:
x = X[index]
print x
看来我需要找到一种算法来逆向工程
StandardScaler().fit_transform(X)
DBSCAN 的 scipy 实现见DBSCAN Code - DBSCAN Test Unit
我想打印属于每个集群的三个集群和点。
更新
当我尝试运行 inverse_transform() 函数时,出现错误
文件“/Users/macbook/anaconda/lib/python2.7/site-packages/sklearn/preprocessing/data.py”,第 384 行,inverse_transform
你可以在这里找到代码: https ://github.com/scikit-learn/scikit-learn/blob/master/sklearn/preprocessing/data.py
if self.with_std:
X *= self.std_
if self.with_mean:
X += self.mean_
这是我得到错误的地方。有什么想法可以解决这个问题吗?