250

我必须使用包含字符串的那些行作为标准来过滤数据框RTB

我正在使用dplyr.

d.del <- df %>%
  group_by(TrackingPixel) %>%
  summarise(MonthDelivery = as.integer(sum(Revenue))) %>%
  arrange(desc(MonthDelivery))

我知道我可以使用该函数filterdplyr但我不知道如何告诉它检查字符串的内容。

特别是我想检查列中的内容TrackingPixel。如果字符串包含RTB我想从结果中删除该行的标签。

4

4 回答 4

316

@latemail 已经在上面的评论中发布了这个问题的答案。您可以对第二个和后续参数使用正则表达式,filter如下所示:

dplyr::filter(df, !grepl("RTB",TrackingPixel))

由于您没有提供原始数据,我将添加一个使用mtcars数据集的玩具示例。想象一下,您只对马自达或丰田生产的汽车感兴趣。

mtcars$type <- rownames(mtcars)
dplyr::filter(mtcars, grepl('Toyota|Mazda', type))

   mpg cyl  disp  hp drat    wt  qsec vs am gear carb           type
1 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4      Mazda RX4
2 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4  Mazda RX4 Wag
3 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 Toyota Corolla
4 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1  Toyota Corona

如果你想反过来做,即排除丰田和马自达汽车,filter命令如下所示:

dplyr::filter(mtcars, !grepl('Toyota|Mazda', type))
于 2014-07-18T09:03:06.757 回答
214

解决方案

可以使用包含str_detect在包stringr中的tidyverse包。str_detect返回TrueFalse关于指定的向量是否包含一些特定的字符串。可以使用此布尔值进行过滤。有关包的详细信息,请参阅stringr 简介stringr

library(tidyverse)
# ─ Attaching packages ──────────────────── tidyverse 1.2.1 ─
# ✔ ggplot2 2.2.1     ✔ purrr   0.2.4
# ✔ tibble  1.4.2     ✔ dplyr   0.7.4
# ✔ tidyr   0.7.2     ✔ stringr 1.2.0
# ✔ readr   1.1.1     ✔ forcats 0.3.0
# ─ Conflicts ───────────────────── tidyverse_conflicts() ─
# ✖ dplyr::filter() masks stats::filter()
# ✖ dplyr::lag()    masks stats::lag()

mtcars$type <- rownames(mtcars)
mtcars %>%
  filter(str_detect(type, 'Toyota|Mazda'))
# mpg cyl  disp  hp drat    wt  qsec vs am gear carb           type
# 1 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4      Mazda RX4
# 2 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4  Mazda RX4 Wag
# 3 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 Toyota Corolla
# 4 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1  Toyota Corona

Stringr 的优点

我们应该使用而stringr::str_detect()不是base::grepl(). 这是因为有以下原因。

  • 包提供的函数都stringr以前缀 开头str_,这使得代码更易于阅读。
  • package函数的第一个参数stringr总是data.frame(或值),然后是参数。(谢谢Paolo)
object <- "stringr"
# The functions with the same prefix `str_`.
# The first argument is an object.
stringr::str_count(object) # -> 7
stringr::str_sub(object, 1, 3) # -> "str"
stringr::str_detect(object, "str") # -> TRUE
stringr::str_replace(object, "str", "") # -> "ingr"
# The function names without common points.
# The position of the argument of the object also does not match.
base::nchar(object) # -> 7
base::substr(object, 1, 3) # -> "str"
base::grepl("str", object) # -> TRUE
base::sub("str", "", object) # -> "ingr"

基准

基准测试的结果如下。对于大型数据帧,str_detect速度更快。

library(rbenchmark)
library(tidyverse)

# The data. Data expo 09. ASA Statistics Computing and Graphics 
# http://stat-computing.org/dataexpo/2009/the-data.html
df <- read_csv("Downloads/2008.csv")
print(dim(df))
# [1] 7009728      29

benchmark(
  "str_detect" = {df %>% filter(str_detect(Dest, 'MCO|BWI'))},
  "grepl" = {df %>% filter(grepl('MCO|BWI', Dest))},
  replications = 10,
  columns = c("test", "replications", "elapsed", "relative", "user.self", "sys.self"))
# test replications elapsed relative user.self sys.self
# 2      grepl           10  16.480    1.513    16.195    0.248
# 1 str_detect           10  10.891    1.000     9.594    1.281
于 2016-10-25T07:32:19.663 回答
44

这个答案与其他答案相似,但使用了 preferredstringr::str_detect和 dplyr rownames_to_column

library(tidyverse)

mtcars %>% 
  rownames_to_column("type") %>% 
  filter(stringr::str_detect(type, 'Toyota|Mazda') )

#>             type  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1      Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> 2  Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> 3 Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> 4  Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1

reprex 包(v0.2.0)于 2018 年 6 月 26 日创建。

于 2018-06-26T16:15:16.030 回答
12

编辑包括较新的across()语法

这是另一种tidyverse解决方案,使用filter(across())or 以前的filter_at. 优点是可以轻松扩展到多列

下面还有一个解决方案,filter_all以便在任何列中查找字符串,diamonds例如,查找字符串“V”

library(tidyverse)

仅在一列中的字符串

# for only one column... extendable to more than one creating a column list in `across` or `vars`!
mtcars %>% 
  rownames_to_column("type") %>% 
  filter(across(type, ~ !grepl('Toyota|Mazda', .))) %>%
  head()
#>                type  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1        Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> 2    Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> 3 Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> 4           Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> 5        Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> 6         Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2

现在被取代的语法是:

mtcars %>% 
  rownames_to_column("type") %>% 
  filter_at(.vars= vars(type), all_vars(!grepl('Toyota|Mazda',.))) 

所有列中的字符串:

# remove all rows where any column contains 'V'
diamonds %>%
  filter(across(everything(), ~ !grepl('V', .))) %>%
  head
#> # A tibble: 6 x 10
#>   carat cut     color clarity depth table price     x     y     z
#>   <dbl> <ord>   <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1  0.23 Ideal   E     SI2      61.5    55   326  3.95  3.98  2.43
#> 2  0.21 Premium E     SI1      59.8    61   326  3.89  3.84  2.31
#> 3  0.31 Good    J     SI2      63.3    58   335  4.34  4.35  2.75
#> 4  0.3  Good    J     SI1      64      55   339  4.25  4.28  2.73
#> 5  0.22 Premium F     SI1      60.4    61   342  3.88  3.84  2.33
#> 6  0.31 Ideal   J     SI2      62.2    54   344  4.35  4.37  2.71

现在被取代的语法是:

diamonds %>% 
  filter_all(all_vars(!grepl('V', .))) %>%
  head

我试图找到以下替代方案,但我没有立即想出一个好的解决方案:

    #get all rows where any column contains 'V'
    diamonds %>%
    filter_all(any_vars(grepl('V',.))) %>%
      head
    #> # A tibble: 6 x 10
    #>   carat cut       color clarity depth table price     x     y     z
    #>   <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
    #> 1 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
    #> 2 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
    #> 3 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48
    #> 4 0.24  Very Good I     VVS1     62.3    57   336  3.95  3.98  2.47
    #> 5 0.26  Very Good H     SI1      61.9    55   337  4.07  4.11  2.53
    #> 6 0.22  Fair      E     VS2      65.1    61   337  3.87  3.78  2.49

更新:感谢用户 Petr Kajzar在这个答案中,这里还有一种方法:

diamonds %>%
   filter(rowSums(across(everything(), ~grepl("V", .x))) > 0)
于 2018-04-16T13:25:06.107 回答