我从一个线性回归模型中得到了结果,它在 R 中有一个因子变量,我想把它弄好,然后输出到 LaTeX 中。理想情况下,因子变量将通过给出变量名称和参考类别但其他空白的行在表格中呈现,然后在下方带有缩进文本的行给出因子水平以及相应的估计值。
我长期以来一直使用该stargazer
软件包将 R 的回归结果转换为 LaTeX,但看不到用它实现我想要的结果的方法。一个例子:
library(ggplot2)
library(stargazer)
levels(diamonds$cut)
options(contrasts = c("contr.treatment", "contr.treatment"))
model1 <- lm(price~cut,data=diamonds)
stargazer(model1,type='text')
这会产生默认输出:
===============================================
Dependent variable:
---------------------------
price
-----------------------------------------------
cutGood -429.893***
(113.849)
cutVery Good -376.998***
(105.164)
cutPremium 225.500**
(104.395)
cutIdeal -901.216***
(102.412)
Constant 4,358.758***
(98.788)
-----------------------------------------------
Observations 53,940
R2 0.013
Adjusted R2 0.013
Residual Std. Error 3,963.847 (df = 53935)
F Statistic 175.689*** (df = 4; 53935)
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
这就是我想要的:
===============================================
Dependent variable:
---------------------------
price
-----------------------------------------------
Cut (Reference: Fair)
Good -429.893***
(113.849)
Very Good -376.998***
(105.164)
Premium 225.500**
(104.395)
Ideal -901.216***
(102.412)
Constant 4,358.758***
(98.788)
-----------------------------------------------
Observations 53,940
R2 0.013
Adjusted R2 0.013
Residual Std. Error 3,963.847 (df = 53935)
F Statistic 175.689*** (df = 4; 53935)
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
stargazer
有没有什么方法可以在没有太多黑客的情况下实现这一目标?是否有其他软件包可以更简单地执行此操作?