I want to proof this lemma in Coq:
a : Type
b : Type
f : a -> b
g : a -> b
h : a -> b
______________________________________(1/1)
(forall x : a, f x = g x) ->
(forall x : a, g x = h x) -> forall x : a, f x = h x
I know that Coq.Relations.Relation_Definitions
defines transitivity for relations:
Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z.
Simply using the proof tactic apply transitivity
obviously fails. How can I apply the transitivity lemma to the goal above?