我正在使用 scipy.sparse.linalg 模块中的 eigs 函数,发现一些不一致的结果。运行两次相同的代码会得到不同的结果,即 np.allclose 的输出为 False。谁能解释这是为什么?
from scipy.sparse.linalg import eigs
from scipy.sparse import spdiags
import numpy as np
n1 = 100
x, dx = linspace(0, 2, n1, retstep=True)
e1 = ones(n1)
A = 1./(dx**2)*spdiags([e1, -2*e1, e1], [-1,0,1], n1, n1)
np.allclose(eigs(A, 90)[0], eigs(A, 90)[0])
IPython 中的示例可以在这里看到(抱歉不知道如何发布 IPython 输出)
编辑 1:
这不是@Kh40tiK 建议的对特征值进行排序的问题。见这里。
编辑 2:
在尝试了不同版本的 Scipy 并运行 @Kh40tiK 发布的脚本并额外调用 scipy.show_config() 之后,似乎使用 MKL 编译的 SciPy 版本是错误的。
使用 MKL:
2.7.6 |Anaconda 1.9.1 (64-bit)| (default, Jan 17 2014, 10:13:17)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-54)]
('numpy:', '1.8.1')
('scipy:', '0.13.3')
umfpack_info:
NOT AVAILABLE
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
blas_opt_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
openblas_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
blas_mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
efine_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
False
False
False
False
False
False
False
False
没有 MKL:
2.7.5+ (default, Feb 27 2014, 19:37:08)
[GCC 4.8.1]
('numpy:', '1.8.1')
('scipy:', '0.13.3')
umfpack_info:
NOT AVAILABLE
atlas_threads_info:
NOT AVAILABLE
blas_opt_info:
libraries = ['f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = c
include_dirs = ['/usr/include/atlas']
atlas_blas_threads_info:
NOT AVAILABLE
openblas_info:
NOT AVAILABLE
lapack_opt_info:
libraries = ['lapack', 'f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base/atlas', '/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
atlas_info:
libraries = ['lapack', 'f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base/atlas', '/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
atlas_blas_info:
libraries = ['f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = c
include_dirs = ['/usr/include/atlas']
mkl_info:
NOT AVAILABLE
True
False
True
False
True
False
True
False