我在看 jgraphT 但我不是很有经验,而且它缺乏一些文档。
我有一些节点,我想创建一个连接的拓扑,提供一些冗余。例子:
我从 n1,n2,n3,n4 开始
我希望能够与每个节点通信,但仍然有不止一个可能的路径,这样如果一个节点下降,其他节点仍然可以通信。
jgraphT 可以为我创建一个好的拓扑吗?也许给一些权重,以便它比其他节点更重视某些节点?
或者你知道其他一些图书馆也能获得同样的成就?此外,如果我可以生成某种网页来记录我创建的拓扑,那就太好了……
评论有点长:
我认为您正在寻找的形式特征没有足够清楚地指定。您显然正在寻找具有一定连通性的图表(http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29),但根据当前问题,可以建议使用CompleteGraphGenerator
.
关键点可能是您提到“一些冗余”和“一些权重”(以及记录拓扑的“一些网页”)。
大概,你想要一个最小的冗余。也就是说,您可能希望插入最少数量的附加边,以便在删除k
任意顶点后图形仍然是连接的。
我不知道可以开箱即用的库。
基于 JGraphT 提供的两个粗略的想法:
可以计算最小切口,并在切口两侧的顶点之间插入额外的边。http://jgrapht.org/javadoc/org/jgrapht/alg/StoerWagnerMinimumCut.html可能是这里的起点。
可以计算强连通分量,并在这些分量之间插入额外的边。可以使用 http://jgrapht.org/javadoc/org/jgrapht/alg/StrongConnectivityInspector.html计算强连通分量
编辑:
基于上面提到的第一个想法添加了一个实现。该ensureConnectivity
方法将确保给定图具有一定的连通性,如下所示:它使用StoerWagnerMinimumCut
类计算最小割。此类的输出是一个顶点列表,这些顶点是切割将创建的组件之一。该computeCutVertices
方法将计算实际必须删除的顶点,以便将图形划分为几个组件。对于这些顶点中的每一个,将计算邻居集。这些邻居中的任何两个(尚未连接的)都将与新边连接。整个过程将重复,直到“切割顶点”的数量大于所需的连通性。
请注意,这尚未经过广泛测试,并且可能有更优雅或更有效的解决方案,但是......一般来说它应该可以工作
import java.util.ArrayList;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Set;
import org.jgrapht.Graph;
import org.jgrapht.UndirectedGraph;
import org.jgrapht.alg.StoerWagnerMinimumCut;
import org.jgrapht.graph.DefaultEdge;
import org.jgrapht.graph.SimpleGraph;
public class GraphConnectivityTest
{
public static void main(String[] args)
{
UndirectedGraph<String, DefaultEdge> graph =
new SimpleGraph<String, DefaultEdge>(DefaultEdge.class);
String v0 = "0";
String v1 = "1";
String v2 = "2";
String v3 = "3";
String v4 = "4";
String v5 = "5";
String v6 = "6";
String v7 = "7";
graph.addVertex(v0);
graph.addVertex(v1);
graph.addVertex(v2);
graph.addVertex(v3);
graph.addVertex(v4);
graph.addVertex(v5);
graph.addVertex(v6);
graph.addVertex(v7);
graph.addEdge(v0, v1);
graph.addEdge(v0, v2);
graph.addEdge(v0, v3);
graph.addEdge(v1, v2);
graph.addEdge(v1, v3);
graph.addEdge(v2, v3);
graph.addEdge(v4, v5);
graph.addEdge(v4, v6);
graph.addEdge(v4, v7);
graph.addEdge(v5, v6);
graph.addEdge(v5, v7);
graph.addEdge(v6, v7);
graph.addEdge(v1, v4);
//graph.addEdge(v3, v6);
ensureConnectivity(graph, 2);
}
/**
* Make sure that the given graph has the specified connectivity.
* That is: Make sure that more than the given number of vertices
* have to be removed in order to split the graph into two
* components.
*
* @param graph The graph
* @param connectivity The desired connectivity
*/
private static <V, E> void ensureConnectivity(
UndirectedGraph<V, E> graph, int connectivity)
{
System.out.println("Desired connectivity is "+connectivity);
while (true)
{
StoerWagnerMinimumCut<V, E> m =
new StoerWagnerMinimumCut<V, E>(graph);
Set<V> minCut = m.minCut();
Set<V> cutVertices =
computeCutVertices(graph, minCut);
System.out.println("Removing "+cutVertices+" will create two components");
if (cutVertices.size() > connectivity)
{
System.out.println("Reached desired connectivity");
return;
}
for (V cutVertex : cutVertices)
{
E edge = addBridgeEdge(graph, cutVertex);
System.out.println("Added edge "+edge);
}
}
}
/**
* Creates an edge between two arbitrary neighbors of the
* given vertex in the given graph that have not yet
* been connected.
*
* @param graph The graph
* @param v The vertex
*/
private static <V, E> E addBridgeEdge(Graph<V, E> graph, V v)
{
Set<E> edges = graph.edgesOf(v);
Set<V> neighbors = new LinkedHashSet<V>();
for (E edge : edges)
{
V v0 = graph.getEdgeSource(edge);
V v1 = graph.getEdgeTarget(edge);
neighbors.add(v0);
neighbors.add(v1);
}
neighbors.remove(v);
List<V> neighborsList = new ArrayList<V>(neighbors);
for (int i=0; i<neighborsList.size(); i++)
{
for (int j=i+1; j<neighborsList.size(); j++)
{
V n0 = neighborsList.get(i);
V n1 = neighborsList.get(j);
E present = graph.getEdge(n0, n1);
if (present == null)
{
return graph.addEdge(n0, n1);
}
}
}
return null;
}
/**
* Compute the vertices in the given graph that have to be
* removed from the graph in order to split it into two
* components (of which one only contains the given
* "minCut" vertices)
*
* @param graph The graph
* @param minCut The set of vertices on one side of the cut
* @return The vertices that have to be removed
*/
private static <V, E> Set<V> computeCutVertices(
Graph<V, E> graph, Set<V> minCut)
{
Set<V> cutVertices = new LinkedHashSet<V>();
for (V v : minCut)
{
Set<E> edges = graph.edgesOf(v);
for (E edge : edges)
{
V v0 = graph.getEdgeSource(edge);
V v1 = graph.getEdgeTarget(edge);
if (minCut.contains(v0) && !minCut.contains(v1))
{
cutVertices.add(v1);
}
if (!minCut.contains(v0) && minCut.contains(v1))
{
cutVertices.add(v0);
}
}
}
return cutVertices;
}
}