我正在尝试估计一个多级模型。我的代码是:
fullModel2 <- lmer(pharmexp_2001 ~ gdp_1000_gm + health_exp_per_cap_1000_gm + life_exp +
labour_cost_1000_gm + (year_gm|lowerID), data=adat, REML=F)
这导致以下模型:
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: pharmexp_2001 ~ gdp_1000_gm + health_exp_per_cap_1000_gm + life_exp +
labour_cost_1000_gm + (year_gm | lowerID)
Data: adat
AIC BIC logLik deviance df.resid
1830.2 1859.9 -906.1 1812.2 191
Scaled residuals:
Min 1Q Median 3Q Max
-2.5360 -0.6853 -0.0842 0.4923 4.0051
Random effects:
Groups Name Variance Std.Dev. Corr
lowerID (Intercept) 134.6851 11.6054
year_gm 0.4214 0.6492 -1.00
Residual 487.5324 22.0801
Number of obs: 200, groups: lowerID, 2
Fixed effects:
Estimate Std. Error t value
(Intercept) -563.7924 75.4125 -7.476
gdp_1000_gm -0.9050 0.2051 -4.413
health_exp_per_cap_1000_gm 37.5394 6.3943 5.871
life_exp 8.8571 0.9498 9.326
labour_cost_1000_gm -1.3573 0.4684 -2.898
Correlation of Fixed Effects:
(Intr) g_1000 h____1 lif_xp
gdp_1000_gm -0.068
hl____1000_ 0.374 -0.254
life_exp -0.996 0.072 -0.393
lbr_c_1000_ -0.133 -0.139 -0.802 0.142
我知道随机效应的相关性为-1是一个问题,但我有一个更大的问题。我必须绘制我的结果,但我只需要 2 行:whenlowerID=0
和 when lowerID=1
。所以我想pharmaexp_2001
在 y 轴上相对于year
x 轴绘制,但我只需要 2 行(by lowerID
)。我知道我必须使用predict.merMod
,但我怎样才能绘制这些结果,只绘制这两行?目前我的情节有 21 行(因为我分析了 21 个国家的药品支出)。