0

Can somebody explain whether the residual variance/Std. Dev. given in the output below is marginal or conditional variance/Std. Dev. I am trying to get the marginal variance for the model. If this is not given in the summary() function, can you tell me how to get it? Thank you!

library(lme4)
sleepstudy <- transform(sleepstudy,period=(Days<6.5))
m0 <- lmer(Reaction ~ Days+ (1 | Subject), sleepstudy)
m2 <- lmer(Reaction ~ Days*period+ (1 | Subject), sleepstudy)

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days * period + (1 | Subject) 
   Data: sleepstudy 

REML criterion at convergence: 1773.86 

Random effects:
 Groups   Name        Variance Std.Dev.
 Subject  (Intercept) 1377.8   37.12   
 Residual              964.5   31.06   
Number of obs: 180, groups: Subject, 18

Fixed effects:
                Estimate Std. Error t value
(Intercept)      207.008     42.533   4.867
Days              16.050      5.176   3.101
periodTRUE        45.908     41.922   1.095
Days:periodTRUE   -6.125      5.358  -1.143

Correlation of Fixed Effects:
            (Intr) Days   prTRUE
Days        -0.974              
periodTRUE  -0.972  0.988       
Dys:prdTRUE  0.941 -0.966 -0.980
4

0 回答 0