15

我的任务是评估各种环境变量如何影响年度人口波动。为此,我需要为时间序列计数拟合泊松自回归模型:

在此处输入图像描述

其中 N i,j是当年在现场观察到的个体数量,是i当年在现场的环境变量- 这些是输入数据,其余是参数:是一年中现场的预期个体数量,并且是随机的每年的效果。jx_{i,j}ij\mu_{i,j}ij\gamma_{j}

是否可以在 R 中拟合这样的模型?我想避免在贝叶斯框架中拟合它,因为计算需要很长时间(我必须处理 5000 个这样的模型)可能更长。

4

3 回答 3

11

首先,让我们创建一些模拟数据(答案末尾的所有临时函数):

set.seed(12345) # updated to T=20 and L=40 for comparative purposes.

T = 20 # number of years
L = 40  # number of sites
N0 = 100 # average initial pop (to simulate data)
sd_env = 0.8 # to simulate the env (assumed mean 0)
env  = matrix(rnorm(T*L, mean=0, sd=sd_env), nrow=T, ncol=L)

# 'real' parameters
alpha  = 0.1
beta   = 0.05
sd     = 0.4
gamma  = rnorm(T-1, mean=0, sd=sd)
mu_ini = log(rpois(n=L, lambda=N0)) #initial means

par_real = list(alpha=alpha, beta=beta, gamma=gamma, 
               sd=sd, mu_ini=mu_ini)

mu = dynamics(par=par_real, x=env, T=T, L=L)

# observed abundances
n = matrix(rpois(length(mu), lambda=mu), nrow=T, ncol=L)

现在,对于一组给定的参数,我们可以模拟每个站点和年份的预期个体数量。由于我们有观察到的个体数量,我们可以为观察写出似然函数(泊松分布),并为增长率的年度偏差添加惩罚(使其呈正态分布)。为此,该函数dynamics将模拟模型并且该函数.getLogLike将计算目标函数。现在我们需要优化目标函数。估计的参数是alpha, beta, 年偏差 ( gamma) 和初始预期个体数 ( mu_ini) , 并且可能sigma.

对于第一次尝试,我们可以为所有参数提供 0 作为初始猜测,但对于我们可以使用初始观察到的丰度的初始预期数字(无论如何这就是 MLE)。

fit0 = fitModel0(obs=n, env=env, T=T, L=L)

Optimal parameters: 
      alpha        beta      gamma1      gamma2      gamma3 
 0.28018842  0.05464360 -0.12904373 -0.15795001 -0.04502903 
     gamma4      gamma5      gamma6      gamma7      gamma8 
 0.05045117  0.08435066  0.28864816  0.24111786 -0.80569709 
     gamma9     gamma10     gamma11     gamma12     gamma13 
 0.22786951  0.10326086 -0.50096088 -0.08880594 -0.33392310 
    gamma14     gamma15     gamma16     gamma17     gamma18 
 0.22664634 -0.47028311  0.11782381 -0.16328820  0.04208037 
    gamma19     mu_ini1     mu_ini2     mu_ini3     mu_ini4 
 0.17648808  4.14267523  4.19187205  4.05573114  3.90406443 
    mu_ini5     mu_ini6     mu_ini7     mu_ini8     mu_ini9 
 4.08975038  4.17185883  4.03679049  4.23091760  4.04940333 
   mu_ini10    mu_ini11    mu_ini12    mu_ini13    mu_ini14 
 4.19355333  4.05543081  4.15598515  4.18266682  4.09095730 
   mu_ini15    mu_ini16    mu_ini17    mu_ini18    mu_ini19 
 4.17922360  3.87211968  4.04509178  4.19385641  3.98403521 
   mu_ini20    mu_ini21    mu_ini22    mu_ini23    mu_ini24 
 4.08531659  4.19294203  4.29891769  4.21025211  4.16297457 
   mu_ini25    mu_ini26    mu_ini27    mu_ini28    mu_ini29 
 4.19265543  4.28925869  4.10752810  4.10957212  4.14953247 
   mu_ini30    mu_ini31    mu_ini32    mu_ini33    mu_ini34 
 4.09690570  4.34234547  4.18169575  4.01663339  4.32713905 
   mu_ini35    mu_ini36    mu_ini37    mu_ini38    mu_ini39 
 4.08121891  3.98256819  4.08658375  4.05942834  4.06988174 
   mu_ini40 
 4.05655031

这可行,但通常一些参数可能是相关的并且更难以从数据中识别,因此可以使用顺序方法(可以阅读Bolker 等人 2013了解更多信息)。在这种情况下,我们逐渐增加参数的数量,从而提高校准每个阶段优化的初始猜测。对于此示例,第一阶段仅估计alphabeta,并使用对增长率和环境的线性模型的猜测。然后,在第二阶段,我们使用第一次优化的估计值并添加年度偏差作为参数(gamma)。最后,我们使用第二次优化的估计值并将初始期望值作为参数添加。我们最后添加初始期望值,假设初始观察值已经非常接近并且是一个很好的开始猜测,但另一方面,我们不清楚剩余参数的值。

fit  = fitModel(obs=n, env=env, T=T, L=L)


Phase 1: alpha and beta only
Optimal parameters: 
     alpha       beta 
0.18172961 0.06323379 

neg-LogLikelihood:  -5023687 
Phase 2: alpha, beta and gamma
Optimal parameters: 
      alpha        beta      gamma1      gamma2      gamma3 
 0.20519928  0.06238850 -0.35908716 -0.21453015 -0.05661066 
     gamma4      gamma5      gamma6      gamma7      gamma8 
 0.18963170  0.17800563  0.34303170  0.28960181 -0.72374927 
     gamma9     gamma10     gamma11     gamma12     gamma13 
 0.28464203  0.16900331 -0.40719047 -0.01292168 -0.25535610 
    gamma14     gamma15     gamma16     gamma17     gamma18 
 0.28806711 -0.38924648  0.19224527 -0.07875934  0.10880154 
    gamma19 
 0.24518786 

neg-LogLikelihood:  -5041345 
Phase 3: alpha, beta, gamma and mu_ini
Optimal parameters: 
        alpha          beta        gamma1        gamma2 
 0.1962334008  0.0545361273 -0.4298024242 -0.1984379386 
       gamma3        gamma4        gamma5        gamma6 
 0.0240318556  0.1909639571  0.1116636126  0.3465693397 
       gamma7        gamma8        gamma9       gamma10 
 0.3478695629 -0.7500599493  0.3600551021  0.1361405398 
      gamma11       gamma12       gamma13       gamma14 
-0.3874453347 -0.0005839263 -0.2305008546  0.2819608670 
      gamma15       gamma16       gamma17       gamma18 
-0.3615273177  0.1792020332 -0.0685681922  0.1203006457 
      gamma19       mu_ini1       mu_ini2       mu_ini3 
 0.2506129351  4.6639314468  4.7205977429  4.5802529032 
      mu_ini4       mu_ini5       mu_ini6       mu_ini7 
 4.4293994068  4.6182382472  4.7039110982  4.5668031666 
      mu_ini8       mu_ini9      mu_ini10      mu_ini11 
 4.7610910879  4.5844180026  4.7226353021  4.5823048717 
     mu_ini12      mu_ini13      mu_ini14      mu_ini15 
 4.6814189824  4.7130039559  4.6135420745  4.7100006841 
     mu_ini16      mu_ini17      mu_ini18      mu_ini19 
 4.4080115751  4.5758092977  4.7209394881  4.5150790425 
     mu_ini20      mu_ini21      mu_ini22      mu_ini23 
 4.6171948847  4.7141188899  4.8303375556  4.7392110431 
     mu_ini24      mu_ini25      mu_ini26      mu_ini27 
 4.6893526309  4.7237687961  4.8234804183  4.6333012324 
     mu_ini28      mu_ini29      mu_ini30      mu_ini31 
 4.6392335265  4.6817044754  4.6260620666  4.8713345071 
     mu_ini32      mu_ini33      mu_ini34      mu_ini35 
 4.7107116580  4.5471434622  4.8540773708  4.6129553933 
     mu_ini36      mu_ini37      mu_ini38      mu_ini39 
 4.5134108799  4.6231016082  4.5823454113  4.5969785420 
     mu_ini40 
 4.5835763300 

neg-LogLikelihood:  -5047251 

比较模型的两个校准,我们可以看到第二个为目标函数提供了较低的值。此外,比较“实际”年度偏差和估计偏差之间的相关性,我们对第二次校准有更高的相关性:

cor(gamma, fit0$par$gamma)
[1] 0.8708379
cor(gamma, fit$par$gamma)
[1] 0.9871758

查看输出,我们可以看到在第一次校准中估计初始期望值(所有站点都被低估)存在一些问题(使用真实数据,通常多阶段校准效果更好):

par(mfrow=c(3,2), mar=c(3,5,1,1), oma=c(1,1,1,1))
for(i in 1:4) {
  ylim=c(0, 1.1*log(max(fit$fitted, n)))
  plot(log(fit$fitted[,i]), type="l", col="blue", ylim=ylim,
       ylab="mu (log)")
  lines(log(fit0$fitted[,i]), col="green")
  points(log(mu[,i]), col="red")
  mtext(paste("Site ", i), 3, adj=0.05, line=-2)
  if(i==3) {
    mtext(c("observed", "fitModel0", "fitModel1"), 1, adj=0.95, 
          line=-1.5:-3.5, col=c("red", "green", "blue"), cex=0.8)
  }
}

mus = rbind(mu_ini, fit$par$mu_ini, fit0$par$mu_ini)
barplot(mus, beside=TRUE, col=c("red", "blue", "green"),
        ylab="Initial expected population",
        xlab="Sites", border=NA)

gam = rbind(gamma, fit$par$gamma, fit0$par$gamma)
barplot(gam, beside=TRUE, col=c("red", "blue", "green"),
        ylab="Annual deviates", border=NA)

剧情

最后,

system.time(fitModel(obs=n, env=env, T=T, L=L))

   user  system elapsed 
   9.85    0.00    9.85 

这比@Thierry 使用 INLA(来自 )提出的解决方案慢了大约四倍summary(model)

Time used:
 Pre-processing    Running inla Post-processing           Total 
         0.1070          2.3131          0.0460          2.4661

但是,在对我的函数进行字节编译后,我们得到:

   user  system elapsed 
   7.53    0.00    7.53

它快了 24%,现在只比 INLA 方法慢 3 倍。尽管如此,我认为即使对于数千次实验也是合理的(我自己的模型只需要 5 天进行一次优化,所以我在这里可能有偏差)并且由于我们使用的是模拟数据,我们可以比较参数估计的可靠性除了电脑时间。

# The functions -----------------------------------------------------------

require(compiler)

dynamics = function(par, obs, x, T, L) {

  alpha  = par$alpha
  beta   = par$beta
  gamma  = if(!is.null((par$gamma))) par$gamma else rep(0, T-1)
  mu_ini = if(!is.null(par$mu_ini)) exp(par$mu_ini) else obs[1,]

  mu = matrix(nrow=T, ncol=L)

  mu[1,] = mu_ini

  for(t in seq_len(T-1)) {
    log_mu_new = log(mu[t,]) + alpha + beta*x[t,] + gamma[t]
    mu[t+1, ] = exp(log_mu_new)
  }
  return(mu)
}

dynamics = cmpfun(dynamics)

reListPars = function(par) {
  out = list()
  out$alpha = as.numeric(par["alpha"])
  out$beta  = as.numeric(par["beta"])
  if(!is.na(par["sd"])) out$sd = as.numeric(par["sd"])
  gammas =  as.numeric(par[grepl("gamma", names(par))])
  if(length(gammas)>0) out$gamma = gammas
  mu_inis = as.numeric(par[grepl("mu_ini", names(par))])
  if(length(mu_inis)>0) out$mu_ini = mu_inis
  return(out)
}

reListPars = cmpfun(reListPars)

.getLogLike = function(par, obs, env, T, L) {
  par = reListPars(par)
  if(is.null(par$sd)) {
    par$sd = if(!is.null(par$gamma)) sd(par$gamma)+0.01 else 1
  }
  mu = dynamics(par=par, obs=obs, x=env, T=T, L=L)
  logLike = sum(obs*log(mu) - mu) - sum(par$gamma^2/(2*par$sd^2))
  return(-logLike)
}

.getLogLike = cmpfun(.getLogLike)

.getUpper = function(par) {
  par$alpha = 10*par$alpha + 1
  par$beta  = 10*abs(par$beta) + 1
  if(!is.null(par$gamma)) {
    if(!is.null(par$sd)) sd = par$sd else sd=sd(par$gamma)
    if(sd==0) sd=1
    par$gamma = rep(qnorm(0.999, sd=sd), length(par$gamma))
  }
  if(!is.null(par$mu_ini)) par$mu_ini = 5*par$mu_ini
  if(!is.null(par$sd)) par$sd = 10*par$sd
  par = unlist(par)
  return(par)
}

.getUpper = cmpfun(.getUpper)

.getLower = function(par) {
  par$alpha = 0 # alpha>0?
  par$beta  = -10*abs(par$beta) - 1
  if(!is.null(par$gamma)) {
    if(!is.null(par$sd)) sd = par$sd else sd=sd(par$gamma)
    if(sd==0) sd=1
      par$gamma = rep(qnorm(1-0.999, sd=sd), length(par$gamma))
  }
  if(!is.null(par$mu_ini)) par$mu_ini = 0.2*par$mu_ini
  if(!is.null(par$sd)) par$sd = 0.0001*par$sd
  par = unlist(par)
  return(par)
}

.getLower = cmpfun(.getLower)

fitModel = function(obs, env, T, L) {

  r = log(obs[-1,]/obs[-T,])
  guess = data.frame(rate=as.numeric(r), env=as.numeric(env[-T,]))
  mod1 = lm(rate ~ env, data=guess)

  output = list()
  output$par = NULL

  # Phase 1: alpha an beta only
  cat("Phase 1: alpha and beta only\n")

  par = list()
  par$alpha = as.numeric(coef(mod1)[1])
  par$beta  = as.numeric(coef(mod1)[2])

  opt = optim(par=unlist(par), fn=.getLogLike, gr=NULL, 
              obs=obs, env=env, T=T, L=L, method="L-BFGS-B",
              upper=.getUpper(par), lower=.getLower(par))
  opt$bound = data.frame(par=unlist(par), low=.getLower(par), 
                         upp=.getUpper(par))

  output$phase1 = opt

  cat("Optimal parameters: \n")
  print(opt$par)
  cat("\nneg-LogLikelihood: ", opt$value, "\n")

  # phase 2: alpha, beta and gamma
  cat("Phase 2: alpha, beta and gamma\n")

  optpar = reListPars(opt$par)
  par$alpha = optpar$alpha
  par$beta  = optpar$beta
  par$gamma = rep(0, T-1)

  opt = optim(par=unlist(par), fn=.getLogLike, gr=NULL, 
              obs=obs, env=env, T=T, L=L, method="L-BFGS-B",
              upper=.getUpper(par), lower=.getLower(par))
  opt$bound = data.frame(par=unlist(par), low=.getLower(par), 
                           upp=.getUpper(par))

  output$phase2 = opt

  cat("Optimal parameters: \n")
  print(opt$par)
  cat("\nneg-LogLikelihood: ", opt$value, "\n")

  # phase 3: alpha, beta, gamma and mu_ini
  cat("Phase 3: alpha, beta, gamma and mu_ini\n")

  optpar = reListPars(opt$par)
  par$alpha = optpar$alpha
  par$beta  = optpar$beta
  par$gamma = optpar$gamma
  par$mu_ini = log(obs[1,])

  opt = optim(par=unlist(par), fn=.getLogLike, gr=NULL, 
              obs=obs, env=env, T=T, L=L, method="L-BFGS-B",
              upper=.getUpper(par), lower=.getLower(par),
              control=list(maxit=1000))
  opt$bound = data.frame(par=unlist(par), low=.getLower(par), 
                         upp=.getUpper(par))

  output$phase3 = opt

  cat("Optimal parameters: \n")
  print(opt$par)
  cat("\nneg-LogLikelihood: ", opt$value, "\n")

  output$par = reListPars(opt$par)

  output$fitted = dynamics(par=output$par, obs=obs, x=env, T=T, L=L)
  output$observed = obs
  output$env = env

  return(output)

}

fitModel = cmpfun(fitModel)

fitModel0 = function(obs, env, T, L) {

  output = list()
  output$par = NULL

  par = list()
  par$alpha = 0
  par$beta  = 0
  par$gamma = rep(0, T-1)
  par$mu_ini = log(obs[1,])

  opt = optim(par=unlist(par), fn=.getLogLike, gr=NULL, 
              obs=obs, env=env, T=T, L=L, method="L-BFGS-B",
              upper=.getUpper(par), lower=.getLower(par))
  opt$bound = data.frame(par=unlist(par), low=.getLower(par), 
                         upp=.getUpper(par))

  output$phase1 = opt

  cat("Optimal parameters: \n")
  print(opt$par)
  cat("\nneg-LogLikelihood: ", opt$value, "\n")

  output$par = reListPars(opt$par)

  output$fitted = dynamics(par=output$par, obs=obs, x=env, T=T, L=L)
  output$observed = obs
  output$env = env

  return(output)

}

fitModel0 = cmpfun(fitModel0)
于 2014-03-24T02:49:16.323 回答
1

看看 INLA 包http://www.r-inla.org

它是贝叶斯,但使用集成嵌套拉普拉斯近似,这使得模型的速度可与频率模型(glm,glmm)的速度相媲美。

从Ricardo Oliveros-Ramos 开始muenvL = 40。首先准备数据集

dataset <- data.frame(
  count = rpois(length(mu), lambda = mu),
  year = rep(seq_len(T), L),
  site = rep(seq_len(L), each = T),
  env = as.vector(env)
)
library(reshape2)
n <- as.matrix(dcast(year ~ site, data = dataset, value.var = "count")[, -1])
dataset$year2 <- dataset$year

运行模型

library(INLA)
system.time(
  model <- inla(
    count ~ 
      env +
      f(year, model = "ar1", replicate = site) + 
      f(year2, model = "iid"), 
    data = dataset,
    family = "poisson"
  )
)
   user  system elapsed 
   0.18    0.14    3.77

将速度与 Ricardo 的解决方案进行比较

system.time(test <- fitModel(obs=n, env=env, T=T, L=L))
   user  system elapsed 
  11.06    0.00   11.06 

将速度与常客 glmm 进行比较(无自相关)

library(lme4)
system.time(
  m <- glmer(
    count ~ env + (1|site) + (1|year), 
    data = dataset, 
    family = poisson
  )
)
   user  system elapsed 
   0.44    0.00    0.44 

无自相关的 inla 速度

system.time(
  model <- inla(
    count ~ 
      env +
      f(site, model = "iid") + 
      f(year, model = "iid"), 
    data = dataset,
    family = "poisson"
  )
)
   user  system elapsed 
   0.19    0.11    2.09
于 2014-03-24T00:02:36.577 回答
0

模型公式与您给出的不同,但从您的问题标题看来,CRAN 包hhh4中的函数surveillance可能很有趣。它允许您拟合具有随机效应的泊松自回归模型。该函数的文档底部有一些示例。我认为目前的固定效应必须限于每个站点的截距、长期时间趋势和季节性成分,但也许这对你有用。

于 2014-03-22T18:17:56.497 回答