Although I am not completely sure, I think that this problem is NP-hard. As I understand, your question arises due to multiple edges between nodes. The graphs that has multiple edges between same nodes can be expanded to larger graphs with no multiple edges between them. Thus, a graph with multiple edges between same nodes has no difference than a graph without multiple edges.
Let me walkthrough a simple example to explain:
Let there be a graph with 3 nodes (A,B,C) and 5 edges between them (A to B, A to B, B to A, B to C, C to A)
This graph can be expanded and shown with 5 nodes and 7 edges.
Lets expand the node A to 3 different nodes (A1, A2, A3). When we adjust the edges according to previous edges, there exists 7 edges(A1 to B, A2 to B, B to A3, B to C, C to A1, C to A2, C to A3)
As a result, now we have a graph without multiple edges and can be evaluated with the help of Hamiltonian and Bellman Ford.
Hope I've at least cleared the problem a bit.