编辑
这是正确的方法和文档:
import random
from osgeo import gdal, ogr
RASTERIZE_COLOR_FIELD = "__color__"
def rasterize(pixel_size=25):
# Open the data source
orig_data_source = ogr.Open("test.shp")
# Make a copy of the layer's data source because we'll need to
# modify its attributes table
source_ds = ogr.GetDriverByName("Memory").CopyDataSource(
orig_data_source, "")
source_layer = source_ds.GetLayer(0)
source_srs = source_layer.GetSpatialRef()
x_min, x_max, y_min, y_max = source_layer.GetExtent()
# Create a field in the source layer to hold the features colors
field_def = ogr.FieldDefn(RASTERIZE_COLOR_FIELD, ogr.OFTReal)
source_layer.CreateField(field_def)
source_layer_def = source_layer.GetLayerDefn()
field_index = source_layer_def.GetFieldIndex(RASTERIZE_COLOR_FIELD)
# Generate random values for the color field (it's here that the value
# of the attribute should be used, but you get the idea)
for feature in source_layer:
feature.SetField(field_index, random.randint(0, 255))
source_layer.SetFeature(feature)
# Create the destination data source
x_res = int((x_max - x_min) / pixel_size)
y_res = int((y_max - y_min) / pixel_size)
target_ds = gdal.GetDriverByName('GTiff').Create('test.tif', x_res,
y_res, 3, gdal.GDT_Byte)
target_ds.SetGeoTransform((
x_min, pixel_size, 0,
y_max, 0, -pixel_size,
))
if source_srs:
# Make the target raster have the same projection as the source
target_ds.SetProjection(source_srs.ExportToWkt())
else:
# Source has no projection (needs GDAL >= 1.7.0 to work)
target_ds.SetProjection('LOCAL_CS["arbitrary"]')
# Rasterize
err = gdal.RasterizeLayer(target_ds, (3, 2, 1), source_layer,
burn_values=(0, 0, 0),
options=["ATTRIBUTE=%s" % RASTERIZE_COLOR_FIELD])
if err != 0:
raise Exception("error rasterizing layer: %s" % err)
原始问题
我正在寻找有关如何使用的信息osgeo.gdal.RasterizeLayer()
(文档字符串非常简洁,我在 C 或 C++ API 文档中找不到它。我只找到了java bindings的文档)。
我改编了一个单元测试并在由多边形组成的 .shp 上进行了尝试:
import os
import sys
from osgeo import gdal, gdalconst, ogr, osr
def rasterize():
# Create a raster to rasterize into.
target_ds = gdal.GetDriverByName('GTiff').Create('test.tif', 1280, 1024, 3,
gdal.GDT_Byte)
# Create a layer to rasterize from.
cutline_ds = ogr.Open("data.shp")
# Run the algorithm.
err = gdal.RasterizeLayer(target_ds, [3,2,1], cutline_ds.GetLayer(0),
burn_values=[200,220,240])
if err != 0:
print("error:", err)
if __name__ == '__main__':
rasterize()
它运行良好,但我得到的只是一个黑色的.tif。
参数是什么burn_values
?可RasterizeLayer()
用于根据属性值对具有不同颜色特征的图层进行栅格化?
如果不能,我应该使用什么?AGG是否适合渲染地理数据(我不想要抗锯齿和非常强大的渲染器,能够正确绘制非常大和非常小的特征,可能来自“脏数据”(退化多边形等),有时以大坐标)?
在这里,多边形通过属性的值来区分(颜色无关紧要,我只想为属性的每个值设置不同的颜色)。