我是编程新手,目前在尝试训练我的 hopfield 网络时遇到了一些简单的问题,但是在尝试计算连接的权重时我不断收到此错误。也许我不了解如何“训练”网络,或者我在某处或某处错过了一步。但是我已经在节点类下定义了函数:
def update_weight(self):
for i in self.incoming_connections:
i.weight += (2*self.activation - 1)*(2*i.sender.activation-1)
这应该是正确的,但是当我更新权重,然后输入,然后激活(位于末尾)。对于我不理解的更新权重函数,我收到一条错误消息,提示“不支持的操作数类型”。有人可以帮我看看我的问题似乎是什么吗?
#
# Preparations
#
import random
import math
import pygame
nodes=[]
training=[]
NUMNODES=16
#
# Node Class
#
class Node(object):
def __init__(self,name=None):
self.name=name
self.activation_threshold=1.0
self.net_input=0.0
self.outgoing_connections=[]
self.incoming_connections=[]
self.activation=None
def __str__(self):
return self.name
def addconnection(self,sender,weight=0.0):
self.incoming_connections.append(Connection(sender,self,weight))
def update_input(self):
self.net_input=0.0
for conn in self.incoming_connections:
self.net_input += conn.weight * conn.sender.activation
print 'Updated Input for node', str(self), 'is', self.net_input
def update_activation(self):
if self.net_input > self.activation_threshold:
self.activation = 1.0
print 'Node', str(self), 'is activated : ', self.activation
elif self.net_input <= self.activation_threshold:
self.activation = 0.0
print 'Node', str(self), 'is not activated : ', self.activation
def update_training(self):
Node = random.choice(nodes)
def update_weight(self):
for i in self.incoming_connections:
i.weight += (2*self.activation - 1)*(2*i.sender.activation-1)
print 'Weight is now set'
#
# Connection Class
#
class Connection(object):
def __init__(self, sender, reciever, weight):
self.weight=weight
self.sender=sender
self.reciever=reciever
def __str__(self):
string = "Connection from " + str(self.sender) + " to " + str(self.reciever) + ", weight = " + str(self.weight)
return string
#
# Other Programs
#
def set_activations(act_vector):
for i in xrange(len(act_vector)):
nodes[i].activation = act_vector[i]
for i in xrange(NUMNODES):
nodes.append(Node(str(i)))
for i in xrange(NUMNODES):#go thru all the nodes calling them i
for j in xrange(NUMNODES):#go thru all the nodes calling them j
if i!=j:#as long as i and j are not the same
nodes[i].addconnection(nodes[j])#connects the nodes together
#
# Training Patterns
#
train1=(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
training.append(train1)
train2=(1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0)
training.append(train2)
train3=(1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0)
training.append(train3)
train4=(1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0)
training.append(train4)
set_activations=(train1)
#
# Running 10 Iterations
#
for i in xrange(10):
print ' *********** Iteration', str(i+1), '***********'
for thing in nodes:
thing.update_weight()
for thing in nodes:
thing.update_input()
for thing in nodes:
thing.update_activation()
out_file=open('output.txt','w')
out_file.close()