我在 Julia Studio(Julia 0.2.0,OSX 10.8.2)中编写了一个非常基本的算法,用于计算炉石中给定法力曲线每回合剩余的平均法力值。完成算法后,我向所有变量添加了类型声明,认为这将有助于提高整体速度。惊喜!添加的类型声明使代码运行速度慢了 4 倍以上(从 ~7s 到 ~28s)。是什么导致了这种奇怪的行为,我该如何解决?感觉添加类型应该有助于编译器生成更快的代码,或者至少没有任何区别。
这是没有类型声明的代码(运行时间 6.76s):
function all_combinations(n)
result = Array{Int64}[]
for x in [1:n]
append!(result, collect(combinations(1:n,x)))
end
return result
end
curve = [2, 3, 4, 5, 5, 4, 3, 2, 1, 1]
games = Array{Int64}[]
function execute()
for game_n in [1:5000]
deck = mapreduce(
(x) -> fill(x[1], x[2]),
append!,
enumerate(curve))
function drawcard()
card = splice!(deck, rand(1:length(deck)))
end
hand = [drawcard() for n in [1:3]]
turn_leftovers = Int64[]
for mana in [1:10]
push!(hand, drawcard())
possible_plays = all_combinations(length(hand))
map!(
play -> map(i -> hand[i], play),
possible_plays)
filter!(x -> sum(x) <= mana, possible_plays)
if !isempty(possible_plays)
play = reduce(
(a, b) -> sum(a) > sum(b) ? a : b,
possible_plays)
for card in play
splice!(hand, findfirst(hand, card))
end
push!(turn_leftovers, mana - sum(play))
else
push!(turn_leftovers, mana)
end
end
push!(games, turn_leftovers)
end
end
println(@elapsed execute())
println("Averaging over $(length(games)) games")
for turn in [1:length(games[1])]
avrg = mean(map(game -> game[turn], games))
println("Left on turn $turn: $avrg")
end
println("Average mana leftover: $(mean(reduce(vcat, games)))")
println("Done")
这是带有类型声明的代码(运行时间 28.48 秒):
function all_combinations(n)
result = Array{Int64}[]
for x in [1:n]
append!(result, collect(combinations(1:n,x)))
end
return result
end
curve::Array{Int64} = [2, 3, 4, 5, 5, 4, 3, 2, 1, 1]
games = Array{Int64}[]
function execute()
for game_n::Int64 in [1:5000]
deck::Array{Int64}
deck = mapreduce(
(x) -> fill(x[1], x[2]),
append!,
enumerate(curve))
function drawcard()
card::Int64 = splice!(deck, rand(1:length(deck)))
end
hand::Array{Int64}
hand = [drawcard() for n in [1:3]]
turn_leftovers::Array{Int64}
turn_leftovers = Int64[]
for mana::Int64 in [1:10]
push!(hand, drawcard())
possible_plays::Array{Array{Int64}} = all_combinations(length(hand))
map!(
play -> map(i::Int64 -> hand[i], play),
possible_plays)
filter!(x::Array{Int64} -> sum(x) <= mana, possible_plays)
if !isempty(possible_plays)
play::Array{Int64} = reduce(
(a::Array{Int64}, b::Array{Int64}) -> sum(a) > sum(b) ? a : b,
possible_plays)
for card::Int64 in play
splice!(hand, findfirst(hand, card))
end
push!(turn_leftovers, mana - sum(play))
else
push!(turn_leftovers, mana)
end
end
push!(games, turn_leftovers)
end
end
println(@elapsed execute())
println("Averaging over $(length(games)) games")
for turn in [1:length(games[1])]
avrg = mean(map(game -> game[turn], games))
println("Left on turn $turn: $avrg")
end
println("Average mana leftover: $(mean(reduce(vcat, games)))")
println("Done")
值得注意的是,即使是最快的版本也比用 JavaScript 编写的等效代码要慢一些。不过,这可能只是因为糟糕的实现。我毫不怀疑,一个更好的算法会在一周中的任何一天胜过 JS。