87

我无法弄清楚如何在 python 中使用 Pandas 进行“反向融化”。这是我的起始数据

import pandas as pd

from StringIO import StringIO

origin = pd.read_table(StringIO('''label    type    value
x   a   1
x   b   2
x   c   3
y   a   4
y   b   5
y   c   6
z   a   7
z   b   8
z   c   9'''))

origin
Out[5]: 
  label type  value
0     x    a      1
1     x    b      2
2     x    c      3
3     y    a      4
4     y    b      5
5     y    c      6
6     z    a      7
7     z    b      8
8     z    c      9

这是我想要的输出:

    label   a   b   c
        x   1   2   3
        y   4   5   6
        z   7   8   9

我确信有一个简单的方法可以做到这一点,但我不知道如何。

4

2 回答 2

115

有几种方法;
使用.pivot

>>> origin.pivot(index='label', columns='type')['value']
type   a  b  c
label         
x      1  2  3
y      4  5  6
z      7  8  9

[3 rows x 3 columns]

使用pivot_table

>>> origin.pivot_table(values='value', index='label', columns='type')
       value      
type       a  b  c
label             
x          1  2  3
y          4  5  6
z          7  8  9

[3 rows x 3 columns]

.groupby后跟.unstack

>>> origin.groupby(['label', 'type'])['value'].aggregate('mean').unstack()
type   a  b  c
label         
x      1  2  3
y      4  5  6
z      7  8  9

[3 rows x 3 columns]
于 2014-03-02T12:44:16.630 回答
3

DataFrame.set_index+DataFrame.unstack

df.set_index(['label','type'])['value'].unstack()

type   a  b  c
label         
x      1  2  3
y      4  5  6
z      7  8  9

简化枢轴参数的传递

df.pivot(*df)

type   a  b  c
label         
x      1  2  3
y      4  5  6
z      7  8  9

[*df]
#['label', 'type', 'value']

对于预期的输出,我们需要DataFrame.reset_indexDataFrame.rename_axis

df.pivot(*df).rename_axis(columns = None).reset_index()

  label  a  b  c
0     x  1  2  3
1     y  4  5  6
2     z  7  8  9

如果列中有重复,a,b我们可能会丢失信息,所以我们需要GroupBy.cumcount

print(df)

  label type  value
0     x    a      1
1     x    b      2
2     x    c      3
3     y    a      4
4     y    b      5
5     y    c      6
6     z    a      7
7     z    b      8
8     z    c      9
0     x    a      1
1     x    b      2
2     x    c      3
3     y    a      4
4     y    b      5
5     y    c      6
6     z    a      7
7     z    b      8
8     z    c      9

df.pivot_table(index = ['label',
                        df.groupby(['label','type']).cumcount()],
               columns = 'type',
               values = 'value')


type     a  b  c
label           
x     0  1  2  3
      1  1  2  3
y     0  4  5  6
      1  4  5  6
z     0  7  8  9
      1  7  8  9

或者:

(df.assign(type_2 = df.groupby(['label','type']).cumcount())
   .set_index(['label','type','type_2'])['value']
   .unstack('type'))
于 2020-02-13T20:18:40.630 回答