所以我一直在尝试使用邻接列表在有向图中实现最短路径的 Dijkstra 算法,但由于我不知道是什么原因,它不会打印出结果(将最小距离打印为 0 到所有节点) .
我写的代码是:
#include <fstream>
#include <functional>
#include <climits>
#include <vector>
#include <queue>
#include <list>
using namespace std;
struct node {
int vertex;
int weight;
node(int v, int w) : vertex(v), weight(w) { };
node() { }
};
class CompareGreater {
public:
bool const operator()(node &nodeX, node &nodeY) {
return (nodeX.weight > nodeY.weight) ;
}
};
vector< list<node> > adj;
vector<int> weights;
priority_queue<node, vector<node>, CompareGreater> Q;
int nrVertices, nrEdges;
void readData();
void Dijkstra(node);
void writeData();
int main(int argc, char *argv[]) {
readData();
Dijkstra(node(1, 0));
writeData();
return 0;
}
void readData() {
fstream in("dijkstra.in", ios::in);
int nodeX, nodeY, weight;
in >> nrVertices >> nrEdges;
adj.resize(nrVertices+1);
weights.resize(nrVertices+1);
for (int i = 1; i <= nrVertices; ++i) {
weights.push_back(INT_MAX);
}
for (int i = 1; i <= nrEdges; ++i) {
in >> nodeX >> nodeY >> weight;
adj[nodeX].push_back(node(nodeY, weight));
}
in.close();
}
void Dijkstra(node startNode) {
node currentNode;
weights[startNode.vertex] = 0;
Q.push(startNode);
while (!Q.empty()) {
currentNode = Q.top();
Q.pop();
if (currentNode.weight <= weights[currentNode.vertex]) {
for (list<node>::iterator it = adj[currentNode.vertex].begin(); it != adj[currentNode.vertex].end(); ++it) {
if (weights[it->vertex] > weights[currentNode.vertex] + it->weight) {
weights[it->vertex] = weights[currentNode.vertex] + it->weight;
Q.push(node((it->vertex), weights[it->vertex]));
}
}
}
}
}
void writeData() {
fstream out("dijkstra.out", ios::out);
weights.resize(nrVertices+1);
for (vector<int>::iterator it = weights.begin()+1; it != weights.end(); ++it) {
out << (*it) << " ";
}
out.close();
}
输入数据是:
5 7
1 2 10
1 3 2
1 5 100
2 4 3
3 2 5
4 3 15
4 5 5
这意味着有 5 个节点,7 条弧(有向边),弧从节点 1 到 2,成本为 10,从 1 到 3,成本为 2,依此类推。
但是,输出是错误的。我不知道程序可能在哪里失败。我从这里得到了主要思想:http: //community.topcoder.com/tc ?module=Static&d1=tutorials&d2=standardTemplateLibrary2# dijkstra1(最后它给出了使用priority_queue的Dijkstra算法的想法)。
提前致谢。
劳尔