0

首先,对不起所有的代码。我很难提出一个具体的问题。我已经对此进行了一段时间的修改,但无法使其正常工作。错误消息不是很有帮助。我将不胜感激。

我想为不同的参数范围并行执行我的函数 'EMatCreatorrx(umin,umax,vmin,vmax,stepsize,pstep,alphamax,A,rot):' 的三个实例,以加快计算速度。

umin、umax 和 vmin、vmax 都分别定义了要在 u 和 v 方向计算的值的范围。我想通过将 u 范围分成三个较小的范围来划分函数。

我已经证明我的代码将函数拼接成三个单独的部分,然后通过运行以下命令重新加入正常工作:

import pp
import sys

import numpy as N
import scipy as sp
from scipy import integrate as Int
from scipy import special as S
import math

cos=sp.cos
sin=sp.sin
exp=sp.exp
sqrt=sp.sqrt
j=S.jn
pi=N.pi
floor=N.floor

def EMatCreatorrx(umin,umax,vmin,vmax,stepsize,pstep,alphamax,A,rot): #pstep needs to be pi/n for n=0,1,2,3,... This is so there will be an odd number of samples when calculating the PSF. This is necessary to increase the accuracy of Simpson's method.   
    mnum=N.int(((umax-umin)/stepsize)+1)
    nnum=N.int(((vmax-vmin)/stepsize)+1)
    pnum=N.int((2*pi/pstep)+1)
    gridshape=(mnum,nnum,pnum)
    I0=N.zeros(gridshape,dtype=complex)
    I1=N.zeros(gridshape,dtype=complex)
    I2=N.zeros(gridshape,dtype=complex)
    E01=N.zeros(gridshape,dtype=complex) 
    E02=N.zeros(gridshape,dtype=complex) 
    E03=N.zeros(gridshape,dtype=complex)
    for m,u in enumerate(N.linspace(umin,umax,num=mnum)):
        for n,v in enumerate(N.linspace(vmin,vmax,num=nnum)):
            for i,p in enumerate(N.linspace(0,2*pi,num=pnum)):             
                vp = sqrt((v*cos(p))**2 + (v*sin(p)*cos(rot)-u*sin(rot))**2)
                up = (v*cos(p)*sin(rot) + u*cos(rot))
                pp= N.arctan2(v*sin(p)*cos(rot) - u*sin(rot), v*cos(p))  
                I0real=lambda theta: N.real((sqrt(cos(theta))*sin(theta))*(1+cos(theta))*  (j(0,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I0imaginary=lambda theta: N.imag((sqrt(cos(theta))*sin(theta))*(1+cos(theta))*(j(0,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I0real_integral= Int.quad(I0real, 0, alphamax)
                I0imag_integral= Int.quad(I0imaginary, 0, alphamax)
                I1real=lambda theta: N.real(sqrt(cos(theta))*((sin(theta))**2)*j(1,vp*sin(theta)/(sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I1imaginary=lambda theta: N.imag(sqrt(cos(theta))*((sin(theta))**2)*j(1,vp*sin(theta)/(sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I1real_integral= Int.quad(I1real, 0, alphamax)
                I1imag_integral= Int.quad(I1imaginary, 0, alphamax)
                I2real=lambda theta: N.real((sqrt(cos(theta))*sin(theta))*(1-cos(theta))*(j(2,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I2imaginary=lambda theta: N.imag((sqrt(cos(theta))*sin(theta))*(1-cos(theta))*(j(2,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))   
                I2real_integral= Int.quad(I2real, 0, alphamax)
                I2imag_integral= Int.quad(I2imaginary, 0, alphamax)
                I0.real[m,n,i]=I0real_integral[0]
                I0.imag[m,n,i]=I0imag_integral[0]
                I1.real[m,n,i]=I1real_integral[0]
                I1.imag[m,n,i]=I1imag_integral[0]
                I2.real[m,n,i]=I2real_integral[0]
                I2.imag[m,n,i]=I2imag_integral[0]
                E01[m,n,i]=-A*(1j*(I0[m,n,i]+I2[m,n,i]*cos(2*pp)))
                E02[m,n,i]=-A*(cos(rot)*1j*I2[m,n,i]*sin(2*pp) - sin(rot)*2*I1[m,n,i]*cos(pp))
                E03[m,n,i]=-A*(sin(rot)*1j*I2[m,n,i]*sin(2*pp) + cos(rot)*2*I1[m,n,i]*cos(pp))
    return E01,E02,E03,pstep


#EMatCreatorrx(umin,umax,vmin,vmax,stepsize,pstep,alphamax,A,rot): #Enter parameters below in tuple "params."

params=-2,2,-2,2,.2,N.pi/10,1,1,0
##############################################################################################################

mnum=N.int(((params[1]-params[0])/params[4])+1)
nnum=N.int(((params[3]-params[2])/params[4])+1)
pnum=N.int((2*N.pi/params[5])+1)
phold=N.zeros((mnum,nnum,pnum), dtype=complex),N.zeros((mnum,nnum,pnum), dtype=complex),N.zeros((mnum,nnum,pnum), dtype=complex), params[5]

uindarr = [(m, u) for m,u in enumerate(N.linspace(params[0],params[1],num=mnum))]

ind_end1=floor(len(uindarr)/3)
spa_end1=uindarr[int(ind_end1)][1]

ind_beg2=ind_end1+1
spa_beg2=uindarr[int(ind_beg2)][1]
ind_end2=2*floor(len(uindarr)/3)
spa_end2=uindarr[int(ind_end2)][1]

ind_beg3=ind_end2+1
spa_beg3=uindarr[int(ind_beg3)][1]

job1 = EMatCreatorrx(params[0],spa_end1,params[2],params[3],params[4],params[5],params[6],params[7],params[8]) 
job2 = EMatCreatorrx(spa_beg2,spa_end2,params[2],params[3],params[4],params[5],params[6],params[7],params[8])
job3 = EMatCreatorrx(spa_beg3,params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8])

phold[0][:ind_end1+1,:,:]=job1[0]
phold[0][ind_beg2:ind_end2+1,:,:]=job2[0]
phold[0][ind_beg3:,:,:]=job3[0]

phold[1][:ind_end1+1,:,:]=job1[1]
phold[1][ind_beg2:ind_end2+1,:,:]=job2[1]
phold[1][ind_beg3:,:,:]=job3[1]

phold[2][:ind_end1+1,:,:]=job1[2]
phold[2][ind_beg2:ind_end2+1,:,:]=job2[2]
phold[2][ind_beg3:,:,:]=job3[2]

在此工作之后,我尝试实现并行 python,以便使用以下代码并行计算三个切片:

import pp
import sys

import numpy as N
import scipy as sp
from scipy import integrate as Int
from scipy import special as S
import math

cos=sp.cos
sin=sp.sin
exp=sp.exp
sqrt=sp.sqrt
j=S.jn
pi=sp.pi
floor=N.floor

def EMatCreatorrx(umin,umax,vmin,vmax,stepsize,pstep,alphamax,A,rot): #pstep needs to be pi/n for n=0,1,2,3,... This is so there will be an odd number of samples when calculating the PSF. This is necessary to increase the accuracy of Simpson's method.   
    cos=sp.cos
    sin=sp.sin
    exp=sp.exp
    sqrt=sp.sqrt
    j=S.jn
    pi=sp.pi  
    mnum=N.int(((umax-umin)/stepsize)+1)
    nnum=N.int(((vmax-vmin)/stepsize)+1)
    pnum=N.int((2*pi/pstep)+1)
    gridshape=(mnum,nnum,pnum)
    I0=N.zeros(gridshape,dtype=complex)
    I1=N.zeros(gridshape,dtype=complex)
    I2=N.zeros(gridshape,dtype=complex)
    E01=N.zeros(gridshape,dtype=complex) 
    E02=N.zeros(gridshape,dtype=complex) 
    E03=N.zeros(gridshape,dtype=complex)
    for m,u in enumerate(N.linspace(umin,umax,num=mnum)):
        for n,v in enumerate(N.linspace(vmin,vmax,num=nnum)):
            for i,p in enumerate(N.linspace(0,2*pi,num=pnum)):             
                vp = sqrt((v*cos(p))**2 + (v*sin(p)*cos(rot)-u*sin(rot))**2)
                up = (v*cos(p)*sin(rot) + u*cos(rot))
                pp= N.arctan2(v*sin(p)*cos(rot) - u*sin(rot), v*cos(p))  
                I0real=lambda theta: N.real((sqrt(cos(theta))*sin(theta))*(1+cos(theta))*(j(0,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I0imaginary=lambda theta: N.imag((sqrt(cos(theta))*sin(theta))*(1+cos(theta))*(j(0,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I0real_integral= Int.quad(I0real, 0, alphamax)
                I0imag_integral= Int.quad(I0imaginary, 0, alphamax)
                I1real=lambda theta: N.real(sqrt(cos(theta))*((sin(theta))**2)*j(1,vp*sin(theta)/(sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I1imaginary=lambda theta: N.imag(sqrt(cos(theta))*((sin(theta))**2)*j(1,vp*sin(theta)/(sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I1real_integral= Int.quad(I1real, 0, alphamax)
                I1imag_integral= Int.quad(I1imaginary, 0, alphamax)
                I2real=lambda theta: N.real((sqrt(cos(theta))*sin(theta))*(1-cos(theta))*(j(2,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))
                I2imaginary=lambda theta: N.imag((sqrt(cos(theta))*sin(theta))*(1-cos(theta))*(j(2,vp*sin(theta)/sin(alphamax)))*exp((1j*up*cos(theta))/((sin(alphamax))**2)))   
                I2real_integral= Int.quad(I2real, 0, alphamax)
                I2imag_integral= Int.quad(I2imaginary, 0, alphamax)
                I0.real[m,n,i]=I0real_integral[0]
                I0.imag[m,n,i]=I0imag_integral[0]
                I1.real[m,n,i]=I1real_integral[0]
                I1.imag[m,n,i]=I1imag_integral[0]
                I2.real[m,n,i]=I2real_integral[0]
                I2.imag[m,n,i]=I2imag_integral[0]
                E01[m,n,i]=-A*(1j*(I0[m,n,i]+I2[m,n,i]*cos(2*pp)))
                E02[m,n,i]=-A*(cos(rot)*1j*I2[m,n,i]*sin(2*pp) - sin(rot)*2*I1[m,n,i]*cos(pp))
                E03[m,n,i]=-A*(sin(rot)*1j*I2[m,n,i]*sin(2*pp) + cos(rot)*2*I1[m,n,i]*cos(pp))
    return E01,E02,E03,pstep






#EMatCreatorrx(umin,umax,vmin,vmax,stepsize,pstep,alphamax,A,rot): #Enter parameters below in tuple "params."

params=-2,2,-2,2,.2,N.pi/10,1,1,0
##############################################################################################################

mnum=N.int(((params[1]-params[0])/params[4])+1)
nnum=N.int(((params[3]-params[2])/params[4])+1)
pnum=N.int((2*N.pi/params[5])+1)
phold=N.zeros((mnum,nnum,pnum), dtype=complex),N.zeros((mnum,nnum,pnum), dtype=complex),N.zeros((mnum,nnum,pnum), dtype=complex), params[5]

uindarr = [(m, u) for m,u in enumerate(N.linspace(params[0],params[1],num=mnum))]

ind_end1=floor(len(uindarr)/3)
spa_end1=uindarr[int(ind_end1)][1]

ind_beg2=ind_end1+1
spa_beg2=uindarr[int(ind_beg2)][1]
ind_end2=2*floor(len(uindarr)/3)
spa_end2=uindarr[int(ind_end2)][1]

ind_beg3=ind_end2+1
spa_beg3=uindarr[int(ind_beg3)][1]

ppservers = ()
job_server = pp.Server()
fn = pp.Template(job_server, EMatCreatorrx, (), ("scipy as sp", "numpy as N", "scipy.special as S", "scipy.integrate as Int",))
job1 = fn.submit(params[0],spa_end1,params[2],params[3],params[4],params[5],params[6],params[7],params[8]) 
job2 = fn.submit(spa_beg2,spa_end2,params[2],params[3],params[4],params[5],params[6],params[7],params[8])
job3 = fn.submit(spa_beg3,params[1],params[2],params[3],params[4],params[5],params[6],params[7],params[8])

phold[0][:ind_end1+1,:,:]=job1[0]
phold[0][ind_beg2:ind_end2+1,:,:]=job2[0]
phold[0][ind_beg3:,:,:]=job3[0]

phold[1][:ind_end1+1,:,:]=job1[1]
phold[1][ind_beg2:ind_end2+1,:,:]=job2[1]
phold[1][ind_beg3:,:,:]=job3[1]

phold[2][:ind_end1+1,:,:]=job1[2]
phold[2][ind_beg2:ind_end2+1,:,:]=job2[2]
phold[2][ind_beg3:,:,:]=job3[2]


print "computation complete"

当我尝试运行上面的代码时,我收到以下文件结束错误:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\tph89\Desktop\Python Path\parallel python\parallel2.py", line 104, in <module>
    job1 = fn.submit((params[0],spa_end1,params[2],params[3],params[4],params[5],params[6],params[7],params[8])) 
  File "C:\Users\tph89\Desktop\Python Path\parallel python\pp.py", line 270, in submit
    self.group, self.globals)
  File "C:\Users\tph89\Desktop\Python Path\parallel python\pp.py", line 459, in submit
    sfunc = self.__dumpsfunc((func, ) + depfuncs, modules)
  File "C:\Users\tph89\Desktop\Python Path\parallel python\pp.py", line 637, in __dumpsfunc
    sources = [self.__get_source(func) for func in funcs]
  File "C:\Users\tph89\Desktop\Python Path\parallel python\pp.py", line 704, in __get_source
    sourcelines = inspect.getsourcelines(func)[0]
  File "C:\Users\tph89\Python27\lib\inspect.py", line 693, in getsourcelines
    else: return getblock(lines[lnum:]), lnum + 1
  File "C:\Users\tph89\Python27\lib\inspect.py", line 677, in getblock
    tokenize.tokenize(iter(lines).next, blockfinder.tokeneater)
  File "C:\Users\tph89\Python27\lib\tokenize.py", line 169, in tokenize
    tokenize_loop(readline, tokeneater)
  File "C:\Users\tph89\Python27\lib\tokenize.py", line 175, in tokenize_loop
    for token_info in generate_tokens(readline):
  File "C:\Users\tph89\Python27\lib\tokenize.py", line 296, in generate_tokens
    raise TokenError, ("EOF in multi-line string", strstart)
tokenize.TokenError: ('EOF in multi-line string', (2, 0))

在这一点上,我有点失落。你们有没有人遇到过这个错误?如果是这样,问题是什么?非常感谢任何输入。谢谢!

4

1 回答 1

1

我在使用 Parallel Python 时也遇到了这个问题,也是由于标记化错误。就我而言,我的一个辅助函数有双缩进(八个空格,由于复制粘贴现象,而函数声明处于零空格的正确缩进级别) - Spyder 的主要解释器刚刚处理了这个问题,但 tokenize 显然没有不是。

在OP的情况下:根据上面的代码格式,以及这里tokenize顶部的注释,错误很可能发生,因为空行上没有空格;这将返回 "" 评论说被处理为 EOF。

于 2015-07-08T23:48:10.943 回答