我正在尝试在 8 核集群上实现此代码。它有 2 个插槽,每个插槽有 4 个核心。我正在尝试创建 8 个线程并使用pthread_attr_setaffinity_np
函数设置亲和力。但是当我查看我在 VTunes 中的表现时,它告诉我正在创建 3969 个奇数线程。我不明白为什么以及如何!最重要的是,我的性能与未设置关联(OS 线程调度)时完全相同。有人可以帮我调试这个问题吗?我的代码运行得很好,但我无法控制线程!提前致谢。
- - - - - - - - - - - - - - - - - - - 代码 - - - - - - --------------------------------
const int num_thrd=8;
bool RCTAlgorithmBackprojection(RabbitCtGlobalData* r)
{
float O_L = r->O_L;
float R_L = r->R_L;
double* A_n = r->A_n;
float* I_n = r->I_n;
float* f_L = r->f_L;*/
cpu_set_t cpu[num_thrd];
pthread_t thread[num_thrd];
pthread_attr_t attr[num_thrd];
for(int i =0; i< num_thrd; i++)
{
threadCopy[i].L = r->L;
threadCopy[i].O_L = r->O_L;
threadCopy[i].R_L = r->R_L;
threadCopy[i].A_n = r->A_n;
threadCopy[i].I_n = r->I_n;
threadCopy[i].f_L = r->f_L;
threadCopy[i].slice= i;
threadCopy[i].S_x = r->S_x;
threadCopy[i].S_y = r->S_y;
pthread_attr_init(&attr[i]);
CPU_ZERO(&cpu[i]);
CPU_SET(i, &cpu[i]);
pthread_attr_setaffinity_np(&attr[i], CPU_SETSIZE, &cpu[i]);
int rc=pthread_create(&thread[i], &attr[i], backProject, (void*)&threadCopy[i]);
if (rc!=0)
{
cout<<"Can't create thread\n"<<endl;
return -1;
}
// sleep(1);
}
for (int i = 0; i < num_thrd; i++) {
pthread_join(thread[i], NULL);
}
//s_rcgd = r;
return true;
}
void* backProject (void* parm)
{
copyStruct* s = (copyStruct*)parm; // retrive the slice info
unsigned int L = s->L;
float O_L = s->O_L;
float R_L = s->R_L;
double* A_n = s->A_n;
float* I_n = s->I_n;
float* f_L = s->f_L;
int slice1 = s->slice;
//cout<<"The size of volume is L= "<<L<<endl;
int from = (slice1 * L) / num_thrd; // note that this 'slicing' works fine
int to = ((slice1+1) * L) / num_thrd; // even if SIZE is not divisible by num_thrd
//cout<<"computing slice " << slice1<< " from row " << from<< " to " << to-1<<endl;
for (unsigned int k=from; k<to; k++)
{
double z = O_L + (double)k * R_L;
for (unsigned int j=0; j<L; j++)
{
double y = O_L + (double)j * R_L;
for (unsigned int i=0; i<L; i++)
{
double x = O_L + (double)i * R_L;
double w_n = A_n[2] * x + A_n[5] * y + A_n[8] * z + A_n[11];
double u_n = (A_n[0] * x + A_n[3] * y + A_n[6] * z + A_n[9] ) / w_n;
double v_n = (A_n[1] * x + A_n[4] * y + A_n[7] * z + A_n[10]) / w_n;
f_L[k * L * L + j * L + i] += (float)(1.0 / (w_n * w_n) * p_hat_n(u_n, v_n));
}
}
}
//cout<<" finished slice "<<slice1<<endl;
return NULL;
}