我很难说服 Agda 终止检查fmap
下面的函数以及在 a 的结构上递归定义的类似函数Trie
。ATrie
是一个域为 a的trieType
,它是由单元、乘积和固定点组成的对象级类型(我省略了副乘积以保持代码最小化)。这个问题似乎与我在定义中使用的类型级替换有关Trie
。(表达式const (μₜ τ) * τ
意味着将替换const (μₜ τ)
应用于类型τ
。)
module Temp where
open import Data.Unit
open import Category.Functor
open import Function
open import Level
open import Relation.Binary
-- A context is just a snoc-list.
data Cxt {} (A : Set ) : Set where
ε : Cxt A
_∷ᵣ_ : Cxt A → A → Cxt A
-- Context membership.
data _∈_ {} {A : Set } (a : A) : Cxt A → Set where
here : ∀ {Δ} → a ∈ Δ ∷ᵣ a
there : ∀ {Δ a′} → a ∈ Δ → a ∈ Δ ∷ᵣ a′
infix 3 _∈_
-- Well-formed types, using de Bruijn indices.
data _⊦ (Δ : Cxt ⊤) : Set where
nat : Δ ⊦
: Δ ⊦
var : _ ∈ Δ → Δ ⊦
_+_ _⨰_ : Δ ⊦ → Δ ⊦ → Δ ⊦
μ : Δ ∷ᵣ _ ⊦ → Δ ⊦
infix 3 _⊦
-- A closed type.
Type : Set
Type = ε ⊦
-- Type-level substitutions and renamings.
Sub Ren : Rel (Cxt ⊤) zero
Sub Δ Δ′ = _ ∈ Δ → Δ′ ⊦
Ren Δ Δ′ = ∀ {x} → x ∈ Δ → x ∈ Δ′
-- Renaming extension.
extendᵣ : ∀ {Δ Δ′} → Ren Δ Δ′ → Ren (Δ ∷ᵣ _) (Δ′ ∷ᵣ _)
extendᵣ ρ here = here
extendᵣ ρ (there x) = there (ρ x)
-- Lift a type renaming to a type.
_*ᵣ_ : ∀ {Δ Δ′} → Ren Δ Δ′ → Δ ⊦ → Δ′ ⊦
_ *ᵣ nat = nat
_ *ᵣ =
ρ *ᵣ (var x) = var (ρ x)
ρ *ᵣ (τ₁ + τ₂) = (ρ *ᵣ τ₁) + (ρ *ᵣ τ₂)
ρ *ᵣ (τ₁ ⨰ τ₂) = (ρ *ᵣ τ₁) ⨰ (ρ *ᵣ τ₂)
ρ *ᵣ (μ τ) = μ (extendᵣ ρ *ᵣ τ)
-- Substitution extension.
extend : ∀ {Δ Δ′} → Sub Δ Δ′ → Sub (Δ ∷ᵣ _) (Δ′ ∷ᵣ _)
extend θ here = var here
extend θ (there x) = there *ᵣ (θ x)
-- Lift a type substitution to a type.
_*_ : ∀ {Δ Δ′} → Sub Δ Δ′ → Δ ⊦ → Δ′ ⊦
θ * nat = nat
θ * =
θ * var x = θ x
θ * (τ₁ + τ₂) = (θ * τ₁) + (θ * τ₂)
θ * (τ₁ ⨰ τ₂) = (θ * τ₁) ⨰ (θ * τ₂)
θ * μ τ = μ (extend θ * τ)
data Trie {} (A : Set ) : Type → Set where
〈〉 : A → ▷ A
〔_,_〕 : ∀ {τ₁ τ₂} → τ₁ ▷ A → τ₂ ▷ A → τ₁ + τ₂ ▷ A
↑_ : ∀ {τ₁ τ₂} → τ₁ ▷ τ₂ ▷ A → τ₁ ⨰ τ₂ ▷ A
roll : ∀ {τ} → (const (μ τ) * τ) ▷ A → μ τ ▷ A
infixr 5 Trie
syntax Trie A τ = τ ▷ A
{-# NO_TERMINATION_CHECK #-}
fmap : ∀ {a} {A B : Set a} {τ} → (A → B) → τ ▷ A → τ ▷ B
fmap f (〈〉 x) = 〈〉 (f x)
fmap f 〔 σ₁ , σ₂ 〕 = 〔 fmap f σ₁ , fmap f σ₂ 〕
fmap f (↑ σ) = ↑ (fmap (fmap f) σ)
fmap f (roll σ) = roll (fmap f σ)
似乎fmap
在每种情况下都递归成一个严格较小的论点;如果我删除递归类型,产品案例当然很好。另一方面,如果我删除产品,定义可以很好地处理递归类型。
在这里进行最简单的方法是什么?内联/熔断技巧看起来并不特别适用,但也许确实适用。还是我应该寻找另一种方法来处理定义中的替换Trie
?