0

我想制作一个基于 19 个特征流量统计的网络入侵检测系统。我已经成功尝试过 One Class SVM 算法,但听说 k 最近邻也可以执行此任务。同样,我有一个无异常的训练数据集和一个带有一些异常和相关标签的测试数据集(1 表示正常,-1 表示异常)。

training_samples.csv(200 个第一个样本,完整文件包含 ~1200)

7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 4, 3, 4, 1, 1, 106, 395.142857143, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
8, 3, 2, 1, 2, 0, 3, 5, 5, 1, 1, 106, 295.75, 60008.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 248.571428571, 52854.5306122, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 294.0, 60694.0, 612, 0, 0, 0, 0
9, 4, 3, 2, 2, 0, 3, 4, 4, 2, 2, 92, 289.111111111, 54141.4320988, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
8, 3, 2, 1, 2, 0, 3, 5, 5, 1, 1, 106, 295.75, 60008.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 294.0, 60694.0, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 229.0, 48929.0, 612, 0, 0, 0, 0
9, 4, 3, 2, 2, 0, 3, 5, 5, 1, 1, 92, 273.111111111, 57440.9876543, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 229.0, 48929.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
9, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 271.555555556, 57980.2469136, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 5, 5, 1, 1, 92, 230.75, 48470.9375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 106, 313.75, 55445.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 248.571428571, 52854.5306122, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 5, 5, 1, 1, 92, 230.75, 48470.9375, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 294.0, 60694.0, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 229.0, 48929.0, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 294.0, 60694.0, 612, 0, 0, 0, 0
8, 3, 2, 1, 2, 0, 3, 5, 5, 1, 1, 106, 295.75, 60008.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 4, 3, 4, 1, 1, 106, 395.142857143, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
8, 3, 2, 1, 2, 0, 3, 5, 5, 1, 1, 106, 295.75, 60008.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
9, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 271.555555556, 57980.2469136, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 5, 5, 1, 1, 92, 230.75, 48470.9375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 3, 4, 4, 1, 1, 92, 294.0, 60694.0, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 229.0, 48929.0, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 5, 5, 1, 1, 92, 230.75, 48470.9375, 612, 0, 0, 0, 0
8, 4, 3, 2, 2, 0, 2, 4, 4, 1, 1, 92, 229.0, 48929.0, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
8, 3, 2, 1, 2, 0, 3, 5, 5, 1, 1, 106, 295.75, 60008.4375, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 4, 3, 4, 1, 1, 106, 395.142857143, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0

testing_samples.csv(100 个第一个样本,完整文件包含 193 个)

7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 3, 4, 4, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 3, 3, 3, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 2, 5, 5, 1, 1, 106, 250.571428571, 52252.244898, 612, 0, 0, 0, 0
7, 3, 2, 1, 2, 0, 4, 3, 4, 1, 1, 106, 395.142857143, 62702.6938776, 612, 0, 0, 0, 0
6, 3, 2, 1, 2, 0, 2, 4, 4, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
1272, 3, 2, 2, 3, 0, 2, 5, 5, 1, 1, 42, 43.572327044, 532.118982635, 612, 1205, 0, 0, 0
5664, 1, 1, 2, 2, 0, 0, 5, 5, 1, 1, 42, 42.113700565, 4.63255240751, 106, 5623, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
18, 4, 3, 2, 2, 0, 6, 8, 8, 1, 1, 92, 271.555555556, 57980.2469136, 612, 0, 0, 0, 0
12, 4, 3, 2, 2, 0, 4, 6, 6, 1, 1, 92, 272.333333333, 57711.2222222, 612, 0, 0, 0, 0
12, 4, 3, 2, 2, 0, 3, 7, 7, 1, 1, 92, 230.166666667, 48624.3055556, 612, 0, 0, 0, 0
18, 4, 3, 2, 2, 0, 6, 8, 8, 1, 1, 92, 271.555555556, 57980.2469136, 612, 0, 0, 0, 0
14, 4, 3, 2, 2, 0, 4, 7, 7, 1, 1, 92, 247.571428571, 53152.6734694, 612, 0, 0, 0, 0
1660, 3, 3, 3, 2, 174, 1652, 1652, 1652, 1, 1, 57, 57.2108433735, 9.40132820438, 106, 0, 0, 0, 0
190, 5, 4, 3, 3, 24, 180, 176, 176, 1, 1, 57, 70.9684210526, 6391.23058172, 612, 0, 0, 0, 0
14, 4, 3, 2, 2, 0, 4, 8, 8, 1, 1, 92, 248.571428571, 52854.5306122, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
14, 3, 2, 1, 2, 0, 5, 9, 9, 1, 1, 106, 286.714285714, 58783.7755102, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
40, 2, 2, 2, 2, 0, 33, 33, 7, 1, 17, 64, 71.35, 254.6775, 106, 0, 0, 0, 0
18, 4, 3, 2, 3, 0, 11, 7, 7, 1, 4, 64, 202.111111111, 48345.5432099, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
14, 3, 2, 1, 2, 0, 7, 7, 7, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
242, 3, 3, 2, 3, 238, 1, 3, 3, 1, 1, 106, 430.669421488, 1453.51881702, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
14, 4, 3, 2, 2, 0, 4, 8, 8, 1, 1, 106, 270.142857143, 48891.5510204, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 6, 6, 6, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
34, 4, 6, 2, 4, 0, 13, 8, 6, 1, 1, 42, 144.882352941, 38046.633218, 612, 1, 0, 0, 0
138, 11, 21, 2, 3, 0, 56, 38, 18, 1, 1, 42, 56.768115942, 186.323041378, 106, 1, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 3, 7, 7, 1, 1, 106, 257.8, 53767.56, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 6, 6, 6, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
20, 4, 4, 2, 3, 0, 4, 9, 7, 1, 1, 102, 205.4, 41334.04, 612, 0, 0, 0, 0
576, 4, 4, 2, 3, 0, 4, 565, 283, 1, 1, 102, 105.590277778, 1793.55434992, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
14, 3, 2, 1, 2, 0, 6, 8, 8, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
14, 3, 2, 1, 2, 0, 5, 9, 9, 1, 1, 106, 286.714285714, 58783.7755102, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
14, 3, 2, 1, 3, 0, 6, 8, 8, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
14, 4, 3, 2, 3, 0, 6, 8, 8, 1, 2, 60, 171.428571429, 32598.5306122, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 3, 7, 7, 1, 1, 106, 257.8, 53767.56, 612, 0, 0, 0, 0
12, 2, 2, 1, 2, 0, 3, 9, 9, 1, 1, 106, 232.5, 48006.75, 612, 0, 0, 0, 0
14, 4, 3, 2, 3, 0, 6, 8, 8, 1, 2, 60, 172.285714286, 32487.3469388, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 3, 7, 7, 1, 1, 106, 257.8, 53767.56, 612, 0, 0, 0, 0
14, 3, 3, 2, 3, 0, 4, 6, 6, 1, 1, 42, 162.857142857, 34231.8367347, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 2, 60, 182.666666667, 37147.5555556, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 3, 7, 7, 1, 1, 106, 257.8, 53767.56, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
12, 4, 3, 2, 3, 0, 5, 7, 7, 1, 2, 60, 185.833333333, 36478.3055556, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 3, 7, 7, 1, 2, 60, 202.6, 42087.24, 612, 0, 0, 0, 0
10, 2, 2, 1, 2, 0, 2, 8, 8, 1, 1, 106, 207.2, 40965.76, 612, 0, 0, 0, 0
14, 3, 2, 1, 3, 0, 6, 8, 8, 1, 1, 106, 322.857142857, 62702.6938776, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 6, 6, 6, 1, 1, 106, 359.0, 64009.0, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
32, 3, 3, 2, 3, 0, 21, 20, 7, 1, 10, 42, 74.9375, 9984.49609375, 612, 0, 0, 0, 0
12, 3, 2, 1, 3, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 5, 7, 7, 1, 1, 106, 316.833333333, 62230.9722222, 612, 0, 0, 0, 0
12, 3, 2, 1, 2, 0, 4, 8, 8, 1, 1, 106, 274.666666667, 56896.8888889, 612, 0, 0, 0, 0
10, 3, 2, 1, 2, 0, 4, 6, 6, 1, 1, 106, 308.4, 61448.64, 612, 0, 0, 0, 0

testing_labels.csv(100 个第一个标签,完整文件包含 193 个)

1
1
1
1
1
1
1
-1
-1
1
1
1
1
1
1
1
1
1
-1
-1
1
1
1
1
1
1
1
1
-1
-1
1
1
1
1
1
1
1
1
-1
1
1
1
1
1
1
1
1
-1
-1
1
1
1
1
1
1
1
1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

我正在使用 Scikit-Learn 的 KNeighborsClassifier 实现,但所有预测标签都设置为 1:

#!/usr/bin/python
import csv, numpy
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import MinMaxScaler

# To save time and avoid attribute reconstruction, we have prebuilt training and testing files 
# where the attributes are presented under CSV format.
# We just need to convert these files into matrices so they can be used directly as input 
# of the machine learning algorithms.

def csv_attributes_to_matrix(csv_file):
    with open(csv_file, 'r') as data:
        rows = csv.reader(data, delimiter=',', quoting=csv.QUOTE_NONNUMERIC)
        return MinMaxScaler().fit_transform(numpy.array(list(rows)))

def csv_labels_to_matrix(csv_file):
    with open(csv_file, 'r') as data:
        rows = csv.reader(data, delimiter=',')
        return [(int(row[0])) for row in rows]

# Create vectors of normal labels for training => all-1-vector
def create_normal_vectors(MATRIX_NORM_length):
    y = list()
    for l in range(MATRIX_NORM_length):
        y.append(1)
    return numpy.array(y)

# Test of KNeighborsClassifier for anomaly detection
def kNN_test(MATRIX_NORM, MATRIX_ANOM, real_labels):
    Y = create_normal_vectors(len(MATRIX_NORM))

    # Parameter grid search    
    for n_neighbors in [1, 2, 3, 5, 10]:
        for weights in ["uniform", "distance"]:
            for algo in ["ball_tree", "kd_tree", "brute"]:
                for p in [1, 5, 10]:
                    for leaf_size in [1, 5, 10] if algo in ["ball_tree", "kd_tree"] else [None]:
                        trained_model = KNeighborsClassifier(n_neighbors, weights, algo, leaf_size, p)
                        trained_model.fit(MATRIX_NORM, Y)
                        predicted_labels = trained_model.predict(MATRIX_ANOM)
                        # Predicted labels are always all set to 1, why ?
                        print (n_neighbors, weights, algo, p, leaf_size), "\n", predicted_labels

# Normal (training) and anomalous (testing) input csv files:
MATRIX_NORM = csv_attributes_to_matrix("training_samples.csv")
MATRIX_ANOM = csv_attributes_to_matrix("testing_samples.csv")
real_labels = csv_labels_to_matrix("testing_labels.csv")

# Launch test
kNN_test(MATRIX_NORM, MATRIX_ANOM, real_labels)

是否可以使用 K 最近邻算法(如果不是来自 sklearn,来自另一个库)来执行新奇/异常值检测?

4

1 回答 1

1

我会阅读维基百科的文章。尤其是,

一个对象通过其邻居的多数票进行分类,该对象被分配到其 k 个最近邻居中最常见的类别(k 是一个正整数,通常很小)。

你的训练集create_normal_vectors说每个点都是“正常的”,所以当一个未标记的点询问它的邻居它属于哪个类时,每个点都会投票给“类 1”。

您可以查看scikit learn 的文档以了解不同的方法。

于 2014-01-28T21:41:46.093 回答