5

在过去的几周里,我在业余时间都在研究 openGL。虽然我遵循一些较旧的 NeHe 示例没有问题,但从我所阅读的所有内容来看,OpenGL4 是一个完全不同的过程。我可以访问红皮书和超级圣经,但前者仍然提供遗留的 opengl 调用,而后者使用他们自己的库。两者对于理解如何在项目中组合代码都没有特别的帮助。例如,我目前的理解是 glu 和 glut 是遗留的,不应该用于 opengl 4。

我可以很容易地为假设的模型空间生成顶点。我很难理解一个模型最终是如何出现在我的屏幕上的。我大约 95% 的尝试都以黑屏告终。

提前致谢。

这是一些代码:

# primatives.py
from collections import Iterable
from functools import reduce
import operator

import numpy as np

from exc import UnimplementedMethod

class Primative(object):
    SIZE = 1  # number of pixels on a default grid

    def __init__(self, point=None, *args, **kwargs):
        self.point = point if isinstance(point, Iterable) else [0, 0, 0]
        self.point = np.array(self.point, dtype=np.float32)
        scaler = [self.SIZE/2]*len(self.point)
        self.point = (self.point * scaler).tolist()

    @property
    def active(self):
        attr = "__active__"
        if not hasattr(self, attr):
            setattr(self, attr, False)
        return getattr(self, attr)

    @active.setter
    def active(self, value):
        attr = "__active__"
        if value in [True, False]:
            setattr(self, attr, value)
        return getattr(self, attr)

    @property
    def vertices(self):
        """Returns a simple list of calculated vertices"""
        clsname = self.__class__.__name__
        raise UnimplementedMethod(clsname)

    @property
    def dimension(self):
        return len(self.point)

    @property
    def scaler(self):
        attr = "__scaler__"
        if not hasattr(self, attr):
            size = self.SIZE / 2
            setattr(self, attr, [size]*self.dimension)
        return getattr(self, attr)

    @scaler.setter
    def scaler(self, *values):
        attr = "__scaler__"
        values = values[0] if len(values) == 1 else values
        if len(values) == 1 and len(values) != self.point:
            if isinstance(values, [int, float]):
                setattr(self, attr, [values]*self.dimension)
            elif isinstance(values, Iterable):
                data = [(v, i)
                        for v, i in zip(values, xrange(self.dimension))]
                value = [v for v, i in data]
                if len(value) != self.dimension:
                    raise ValueError
                setattr(self, attr, value)

    @property
    def translation(self):
        attr = "__transalation__"
        if not hasattr(self, attr):
            size = self.SIZE / 2
            setattr(self, attr, [size]*self.dimension)
        return getattr(self, attr)

    @translation.setter
    def transalation(self, *values):
        attr = "__transalation__"
        values = values[0] if len(values) == 1 else values
        if isinstance(values, (int, float)):
            setattr(self, attr, [values]*self.dimension)
        elif isinstance(values, Iterable):
            data = [(v, i)
                    for v, i in zip(values, xrange(self.dimension))]
            value = [v for v, i in data]
            if len(value) != self.dimension:
                raise ValueError
            setattr(self, attr, value)

    @property
    def rotation(self):
        """
        Rotation in radians
        """
        attr = "__rotation__"
        if not hasattr(self, attr):
            setattr(self, attr, [0]*self.dimension)
        return getattr(self, attr)

    @rotation.setter
    def rotation(self, *values):
        """
        Rotation in radians
        """
        attr = "__rotation__"
        values = values[0] if len(values) == 1 else values
        if isinstance(values, (int, float)):
            setattr(self, attr, [values]*self.dimension)
        elif isinstance(values, Iterable):
            data = [(v, i)
                    for v, i in zip(values, xrange(self.dimension))]
            value = [v for v, i in data]
            if len(value) != self.dimension:
                raise ValueError
            setattr(self, attr, value)

    @property
    def volume(self):
        clsname = self.__class__.__name__
        raise UnimplementedMethod(clsname)


class Cube(Primative):

    #       G           H
    #        * --------- *
    #       /|          /|
    #    C / |       D / |
    #     * --------- *  |
    #     |  * -------|- *
    #     | / E       | / F
    #     |/          |/
    #     * --------- *
    #      A           B

    @property
    def center_of_mass(self):
        """
        Uses density to calculate center of mass
        """
        return self.point

    @property
    def material(self):
        clsname = self.__class__.__name__
        raise UnimplementedMethod(clsname)

    @material.setter
    def material(self, value):
        clsname = self.__class__.__name__
        raise UnimplementedMethod(clsname)

    @property
    def mass(self):
        return self.material.density * self.volume

    @property
    def volume(self):
        func = operator.mul
        return reduce(func, self.scaler, 1)

    @property
    def normals(self):
        """
        computes the vertex normals
        """
        norm = []
        if len(self.point) == 1:
            norm = [
            # counter clockwise
            # x    (left hand rule)
            (-1),           # A
            (1)             # B
            ]
        elif len(self.point) == 2:
            norm = [  
            # counter clockwise
            # x, y    (left hand rule)
            (-1, -1),       # A
            (1, -1),        # B
            (1, 1),         # C
            (-1, 1)         # D
            ]
        elif len(self.point) == 3:
            norm = [
            # counter clockwise
            # x, y, z    (left hand rule)
            (-1, -1, 1),    # A 0
            (1, -1, 1),     # B 1
            (1, 1, 1),      # D 2
            (-1, 1, 1),     # C 3
            (-1, -1, -1),   # E 4
            (1, -1, -1),    # F 5
            (1, 1, -1),     # H 6
            (-1, 1, -1),    # G 7
            ]
        return norm

    @property
    def indices(self):
        indices = []
        if len(self.point) == 2:
            indices = [
                [[1, 0, 3], [2, 3, 1]],   # BAC CDB front
            ]
        elif len(self.point) == 3:
            indices = [
                [[1, 0, 3], [2, 3, 1]],  # BAC CDB front
                [[5, 1, 2], [2, 6, 5]],  # FBD DHF right
                [[4, 5, 6], [6, 7, 4]],  # EFH HGE back
                [[5, 4, 0], [0, 1, 5]],  # FEA ABF bottom
                [[0, 4, 7], [7, 3, 0]],  # AEG GCA left
                [[2, 3, 7], [7, 6, 2]],  # DCG GHD top
            ]
        return indices

    @property
    def nodes(self):
        normals = np.array(self.normals, dtype=np.float32)
        scaler = np.array(self.scaler, dtype=np.float32)
        nodes = normals * scaler
        return nodes.tolist()

    @property
    def vertices(self):
        verts = (n for node in self.nodes for n in node)
        return verts

还有一个:

# Voxel.py
from collections import Iterable
from time import time

import numpy as np
import pyglet
from pyglet.gl import *

from primatives import Cube
import materials


class Voxel(Cube):
    """
    Standard Voxel
    """

    def __init__(self, point=None, material=None):
        super(Voxel, self).__init__(point=point)
        if isinstance(material, materials.Material):
            self.material = material
        else:
            self.material = materials.stone

    def __str__(self):
        point = ", ".join(str(p) for p in self.point)
        material = self.material.name
        desc = "<Voxel [%s] (%s)>" % (material, point)
        return desc

    def __repr__(self):
        point = ", ".join(str(p) for p in self.point)
        material = self.material.name
        desc = "<Voxel %s(%s)>" % (material, point)
        return desc

    @property
    def material(self):
        attr = "__material__"
        if not hasattr(self, attr):
            setattr(self, attr, materials.ether)
        return getattr(self, attr)

    @material.setter
    def material(self, value):
        attr = "__material__"
        if value in materials.valid_materials:
            setattr(self, attr, value)
        return getattr(self, attr)


class Chunk(Cube):
    """
    A Chunk contains a specified number of Voxels.  Chunks are an
    optimization to manage voxels which do not change often.
    """
    NUMBER = 16
    NUMBER_OF_VOXELS_X = NUMBER
    NUMBER_OF_VOXELS_Y = NUMBER
    NUMBER_OF_VOXELS_Z = NUMBER

    def __init__(self, point=None):
        point = (0, 0, 0) if point is None else point
        super(Chunk, self).__init__(point=point)
        self.batch = pyglet.graphics.Batch()
        points = []
        x_scale = self.NUMBER_OF_VOXELS_X / 2
        y_scale = self.NUMBER_OF_VOXELS_Y / 2
        z_scale = self.NUMBER_OF_VOXELS_Z / 2
        self.rebuild_mesh = True
        if len(point) == 1:
            points = ((x,) for x in xrange(-x_scale, x_scale))
        elif len(point) == 2:
            points = ((x, y) 
                      for x in xrange(-x_scale, x_scale) 
                      for y in xrange(-y_scale, y_scale))
        elif len(point) == 3:
            points = ((x, y, z) 
                      for x in xrange(-x_scale, x_scale) 
                      for y in xrange(-y_scale, y_scale)
                      for z in xrange(-z_scale, z_scale))
        t = time()
        self.voxels = dict((point, Voxel(point)) for point in points)
        self.active_voxels = dict((p, v) 
                                  for p, v in self.voxels.iteritems()
                                  if v.active)
        self.inactive_voxels = dict((p, v) 
                                    for p, v in self.voxels.iteritems()
                                    if not v.active)
        print 'Setup Time: %s' % (time() - t)

    @property
    def material(self):
        return ether

    @material.setter
    def material(self, value):
        if value in materials.valid_materials:
            for voxel in self.voxels:
                if voxel.material != value:
                    voxel.material = value
                    self.rebuild_mesh = True

    @property
    def mesh(self):
        """
        Returns the verticies as defined by the Chunk's Voxels
        """
        attr = "__mesh__"
        if self.rebuild_mesh == True:
            self.mesh_vert_count = 0
            vertices = []
            t = time()
            for point, voxel in self.active_voxels.iteritems():
                if voxel.active is True:
                    vertices.extend(voxel.vertices)
                    num_verts_in_voxel = len(voxel.normals)
                    self.mesh_vert_count += num_verts_in_voxel
            print "Mesh Generation Time: %s" % time() - t
            vertices = tuple(vertices)
            setattr(self, attr, vertices)
            voxel_count = len(self.active_voxels)
            voxel_mesh = self.mesh
            count = self.mesh_vert_count
            group = None
            data = ('v3f/static', vertices)
            self.batch.add(count, self.mode, group, data)
        return getattr(self, attr)

    @property
    def center_of_mass(self):
        """
        Uses density to calculate center of mass.  This is probably only
        useful if the chunk represents an object.
        """
        center = self.point
        points = []
        for point, voxel in self.active_voxels.iteritems():
            mass = voxel.mass
            if mass > 0:
                point = [p*mass for p in point]
            points.append(point)
        points = np.array(points)
        means = []
        if points.any():
            for idx, val in enumerate(self.point):
                means.append(np.mean(points[:, idx]))
        if means:
            center = means
        return center

    def add(self, voxel):
        added = False
        point = None
        if isinstance(voxel, Voxel):
            point = voxel.point
        elif isinstance(voxel, Iterable):
            point = voxel
        if point in self.inactive_voxels.iterkeys():
            last = self.voxels[point]
            self.voxels[point] = voxel if isinstance(voxel, Voxel) else last
            self.voxels[point].active = True
            self.active_voxels[point] = self.voxels[point]
            self.inactive_voxels.pop(point)
            added = True
            self.rebuild_mesh = True
        return added

    def remove(self, voxel):
        removed = False
        point = None
        if isinstance(voxel, Voxel):
            point = voxel.point
        elif isinstance(voxel, Iterable):
            point = voxel
        if point in self.active_voxels.iterkeys():
            last = self.voxels[point]
            self.voxels[point] = voxel if isinstance(voxel, Voxel) else last
            self.voxels[point].active = False
            self.inactive_voxels[point] = self.voxels[point]
            self.active_voxels.pop(point)
            removed = True
            self.rebuild_mesh = True
        return removed

    def render(self):
        voxels = len(self.active_voxels)
        self.batch.draw()
        return voxels

if __name__ == "__main__":
    import pyglet
    from pyglet.gl import *

    class Window(pyglet.window.Window):

        def __init__(self, *args, **kwargs):
            super(Window, self).__init__(*args, **kwargs)
            vox_cnt = self.setup_scene()
            print 'Added: %s voxels' % (vox_cnt)

        def run(self):
            """wrapper to start the gui loop"""
            pyglet.app.run()

        def setup_scene(self):
            self.chunk = Chunk()
            cnt = 0
            t = time()
            for x in xrange(self.chunk.NUMBER_OF_VOXELS_X):
                for y in xrange(self.chunk.NUMBER_OF_VOXELS_Y):
                        self.chunk.add((x, y))
                        cnt += 1
            print "Setup Scene Time: %s" % (time() - t)
            return cnt

        def render_scene(self):
            y = h = self.height
            x = w = self.width
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
            glMatrixMode(GL_PROJECTION)
            glLoadIdentity()
            # glEnable(GL_DEPTH_TEST)
            # glDepthFunc(GL_LESS)
            t = time()
            voxels_drawn = self.chunk.render()
            print 'Render Time: %s' % (time() - t)
            print 'Points Rendered %s' % voxels_drawn
            # array_len = len(self.vertex_data)
            # glDrawArrays(GL_TRIANGLES, 0, array_len)

        def on_draw(self, *args, **kwargs):
            self.render_scene()

    w = Window()
    w.run()
4

2 回答 2

1

如果您下载它们,源代码分发中有示例(链接到页面)。

你想看到的是在<top-dir>/examples/opengl.py——一个圆环。如果您进行以下修改,您将拥有一个立方体。

# line 91:
cube.draw()  # previously torus.draw()

# line 178: replace the line with the below (GL_TRIANGLES for GL_QUADS)
glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, indices)

# line 187:
cube = Cube(0.8)  # previously torus = Torus(1, 0.3, 50, 30)


# replace lines 125 through 166 with:
class Cube(object):
    Vertices =(0.,0.,0., 1.,0.,0., 0.,0.,1., 1.,0.,1.,
               0.,1.,0., 1.,1.,0., 0.,1.,1., 1.,1.,1.)

    def __init__(self, scale):
        # Create the vertex and normal arrays.
        indices = [0,1,3,2, 1,5,7,3, 5,4,6,7,
                   0,2,6,4, 0,4,5,1, 2,3,7,6]
        normals = [  0.0, -1.0,  0.0,
                     1.0,  0.0,  0.0,
                     0.0,  1.0,  0.0,
                    -1.0,  0.0,  0.0,
                     0.0,  0.0,  -1.0,
                     0.0,  0.0,   1.0]
        vertices = [scale * v for v in Cube.Vertices]
        vertices = (GLfloat * len(vertices))(*vertices)
        normals = (GLfloat * len(normals))(*normals)
于 2014-04-22T01:08:12.927 回答
1

我不了解 python 的类包装器,并且很长一段时间没有进行任何图形编程。但我知道您应该在硬件人员社区中搜索有关实际工作原理和内部结构的合格答案,这些人员要么创建 VHDL GPU 代码,要么编写低级驱动程序等。他们肯定知道它是如何工作的,并且他们的社区中应该已经提供了一些常见问题解答。

基于这个假设,这是一些谷歌搜索给我的开始:

  1. OpenGL 4.4 API 参考卡-第 7 页- (可在http://www.opengl.org上的顶级资源中获得)显示了一些简单的图片(5 岁?),渲染管道分为

    • 蓝色块表示由 OpenGL 管道提供或获取的各种缓冲区
    • 绿色块表示固定功能阶段
    • 黄色块表示可编程阶段
  2. Jarrred Walton 的 - DirectX 与 OpenGL 辩论的回归指向 130 页的幻灯片放映OpenGL 如何解锁 15 倍的性能增益 | 英伟达博客。两篇文章都属于类别AMD,Intel,NVIDIA,Game Developer Converence

很久以前,我使用 C、C++、Delphi 制作了一些简单的 OpenGL,我的建议是首先完全摆脱 python 映射。只有在您知道自己在寻找什么之后,才能寻找具有良好社区和良好支持的合适类库。

以上是恕我直言开始钓鱼的水域

于 2014-04-25T09:31:14.097 回答