在caret
相关的软件包和帮助系统中varImp()
有:
偏最小二乘法:这里的变量重要性度量基于绝对回归系数的加权和。权重是 PLS 组件数量的平方和减少的函数,并针对每个结果单独计算。因此,系数的贡献与平方和的减少成比例地加权。
caret
以下是按包分类模型的可变重要性的输出method="pls"
:
> varImp(plsFitvac)
pls variable importance
variables are sorted by average importance across the classes
H P R Q
IL17A 9.516 100.000 19.813 61.20
IL8 17.814 1.344 80.628 34.33
IL6ST 10.319 75.452 62.296 68.41
IL23A 7.662 55.422 43.188 44.17
IL27RA 10.311 0.000 45.932 24.76
IL12RB2 15.497 28.467 38.848 33.73
IL12B 13.569 22.799 32.728 27.25
IL12RB1 12.292 23.431 6.395 18.67
IL12A 10.394 22.774 12.330 18.94
EBI3 12.039 6.932 14.877 11.01
IL23R 13.053 10.018 9.708 13.22
很好,但是当我通过这行代码提取这个数据框时:
df <- varImp(plsFitvac)$importance
我得到与上面相同但未排序的结果,但如果已排序会非常好。无论如何,要根据类的平均重要性对这个数据框进行排序(如输出中所述),我这样做了:
df$Sort <- apply(df, 1, sum)
df$Sort <- df$Sort/ncol(df) # not needed since sum and average will be sorted alike
df[order(df$Sort,decreasing=TRUE),]
> df[order(df$Sort,decreasing=TRUE),]
H P R Q Sort
IL6ST 10.318521 75.451572 62.295779 68.40740 43.294655
IL17A 9.515726 100.000000 19.813439 61.20098 38.106029
IL23A 7.662351 55.422249 43.187811 44.16892 30.088267
IL8 17.813522 1.343589 80.628315 34.32519 26.822122
IL12RB2 15.497069 28.466890 38.847943 33.73476 23.309331
IL12B 13.569266 22.798682 32.727759 27.24567 19.268275
IL27RA 10.311489 0.000000 45.932101 24.76301 16.201321
IL12A 10.393673 22.773860 12.329890 18.94323 12.888131
IL12RB1 12.291526 23.431046 6.395495 18.66685 12.156983
IL23R 13.053380 10.018339 9.708473 13.22094 9.200227
EBI3 12.039321 6.931682 14.877214 11.00619 8.970881
所以最终得到的版本与via函数的排序列表不同。我在这里错过了什么吗?谢谢。 caret
varImp()
注意:
我没有传递importance = TRUE
参数来train()
调用 PLSDA 模型,即method = "pls"
.
$重要性
> dput(df)
structure(list(H = c(17.8135216215421, 9.51572613703257, 7.66235106434041,
13.0533801732928, 12.0393206867905, 10.3185210244416, 10.3936725783446,
15.4970686175322, 13.569265567599, 12.291526066084, 10.3114887728613
), P = c(1.34358921525031, 100, 55.4222485106407, 10.0183388053119,
6.93168239216908, 75.4515720604057, 22.7738599760963, 28.4668895810321,
22.7986823025468, 23.4310464801875, 0), R = c(80.6283150180913,
19.8134392303359, 43.1878112878907, 9.70847280019312, 14.8772141493434,
62.2957787591232, 12.3298895434334, 38.8479426109151, 32.7277593254102,
6.39549491068232, 45.932101268196), Q = c(34.3251855315416, 61.2009790458015,
44.1689231007598, 13.2209412495112, 11.0061874803613, 68.4074013762385,
18.9432341406872, 33.7347566350668, 27.2456691770754, 18.6668467881651,
24.7630136095146)), .Names = c("H", "P", "R", "Q"), row.names = c("IL8",
"IL17A", "IL23A", "IL23R", "EBI3", "IL6ST", "IL12A", "IL12RB2",
"IL12B", "IL12RB1", "IL27RA"), class = "data.frame")
问题:
如何衡量跨类的重要性?我可以信任未排序varImp()
的输出吗?
编辑:对变量重要性进行排序
的方法:max()
vi <- varImp(plsFitvac)$importance
vi$max <- apply(vi, 1, max)
vi[order(-vi$max),]
结果相同varImp()
:
varImp(plsFitvac)
这产生了:
> vi[order(-vi$max),]
H P R Q max
IL17A 9.515726 100.000000 19.813439 61.20098 100.00000
IL8 17.813522 1.343589 80.628315 34.32519 80.62832
IL6ST 10.318521 75.451572 62.295779 68.40740 75.45157
IL23A 7.662351 55.422249 43.187811 44.16892 55.42225
IL27RA 10.311489 0.000000 45.932101 24.76301 45.93210
IL12RB2 15.497069 28.466890 38.847943 33.73476 38.84794
IL12B 13.569266 22.798682 32.727759 27.24567 32.72776
IL12RB1 12.291526 23.431046 6.395495 18.66685 23.43105
IL12A 10.393673 22.773860 12.329890 18.94323 22.77386
EBI3 12.039321 6.931682 14.877214 11.00619 14.87721
IL23R 13.053380 10.018339 9.708473 13.22094 13.22094
但是sum()
跨类使用重要性产生了不同的排名(见上文)。那么哪一个是正确的,如果max()
方法中存在关联会发生什么?